#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Clinical utility of mono-exponential model diffusion weighted imaging using two b-values compared to the bi- or stretched exponential model for the diagnosis of biliary atresia in infant liver MRI


Autoři: Jisoo Kim aff001;  Haesung Yoon aff001;  Mi-Jung Lee aff001;  Myung-Joon Kim aff001;  Kyunghwa Han aff001;  Seok Joo Han aff002;  Hong Koh aff002;  Seung Kim aff002;  Hyun Joo Shin aff001
Působiště autorů: Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea aff001;  Severance Pediatric Liver Disease Research Group, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea aff002;  Department of Pediatric Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea aff003;  Department of Pediatric Gastroenterology, Hepatology and Nutrition, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226627

Souhrn

Purpose

To investigate the clinical utility of mono-exponential model diffusion weighted imaging (DWI) using two b-values compared to the bi- or stretched exponential model to differentiate biliary atresia (BA) from non-BA in pediatric liver magnetic resonance imaging (MRI).

Methods

Patients who underwent liver MRI with DWI for suspected BA from November 2017 to September 2018 were retrospectively included and divided into BA and non-BA groups. Laboratory results including γ-glutamyl transferase (γGT) were compared between the two groups using the Mann-Whitney U test and Fisher’s exact test. The hepatic apparent diffusion coefficient (ADC) 10 using ten b-values and ADC 2 using two b-values were obtained from the mono-exponential model. The slow diffusion coefficient (D), fast diffusion coefficient (D*), and perfusion fraction (f) were obtained from the bi-exponential model. The distributed diffusion coefficient (DDC) and heterogeneity index (α) were measured from the stretched exponential model. Parameters were compared between the two groups using a linear mixed model and diagnostic performance was assessed using the area under the curve (AUC) analysis.

Results

For 12 patients in the BA and five patients in the non-BA group, the ADC 10 (median 0.985 ×10−3 mm2/s vs. 1.332 ×10−3 mm2/s, p = 0.008), ADC 2 (median 0.987 ×10−3 mm2/s vs. 1.335 ×10−3 mm2/s, p = 0.017), D* (median 33.2 ×10−3 mm2/s vs. 55.3 ×10−3 mm2/s, p = 0.021), f (median 13.4%, vs. 22.1%, p = 0.009), and DDC (median 0.889 ×10−3 mm2/s vs. 1.323 ×10−3 mm2/s, p = 0.009) values were lower and the γGT (median 368.0 IU/L vs. 93.5 IU/L, p = 0.02) and α (median 0.699 vs. 0.556, p = 0.023) values were higher in the BA group. The AUC values for γGT (AUC 0.867 95% confidence interval [CI] 0.616–0.984), ADC 10 (AUC 0.963, 95% CI 0.834–0.998), ADC 2 (AUC 0.925, 95% CI 0.781–0.987), f (AUC 0.850, 95% CI 0.686–0.949), and DDC (AUC 0.925, 95% CI 0.781–0.987) were not significantly different, except for the D* and α values.

Conclusion

Patients with BA had lower ADC 10, ADC 2, D*, f, and DDC values and higher γGT and α values than those in the non-BA group. The diagnostic performance of ADC 2 using only two b-values showed excellent diagnostic performance and was not significantly different from that of γGT, ADC 10, f, and DDC for diagnosing BA.

Klíčová slova:

Pediatrics – Diagnostic medicine – Magnetic resonance imaging – Liver fibrosis – Fatty liver – Mass diffusivity – Liver and spleen scan – Diffusion weighted imaging


Zdroje

1. Weerasooriya VS, White FV, Shepherd RW. Hepatic fibrosis and survival in biliary atresia. J Pediatr. 2004;144: 123–125. doi: 10.1016/j.jpeds.2003.09.042 14722530

2. Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet. 2009;374: 1704–1713. doi: 10.1016/S0140-6736(09)60946-6 19914515

3. Feldman AG, Mack CL. Biliary Atresia: Clinical Lessons Learned. J Pediatr Gastroenterol Nutr. 2015;61: 167–175. doi: 10.1097/MPG.0000000000000755 25658057

4. Kim YH, Kim MJ, Shin HJ, Yoon H, Han SJ, Koh H, et al. MRI-based decision tree model for diagnosis of biliary atresia. Eur Radiol. 2018. doi: 10.1007/s00330-018-5327-0 29476221

5. Han SJ, Kim MJ, Han A, Chung KS, Yoon CS, Kim D, et al. Magnetic resonance cholangiography for the diagnosis of biliary atresia. J Pediatr Surg. 2002;37: 599–604 doi: 10.1053/jpsu.2002.31617 11912518

6. Kim MJ, Park YN, Han SJ, Yoon CS, Yoo HS, Hwang EH, et al. Biliary atresia in neonates and infants: triangular area of high signal intensity in the porta hepatis at T2-weighted MR cholangiography with US and histopathologic correlation. Radiology. 2000;215: 395–401. doi: 10.1148/radiology.215.2.r00ma04395 10796915

7. Liu B, Cai J, Xu Y, Peng X, Zheng H, Huang K, et al. Three-dimensional magnetic resonance cholangiopancreatography for the diagnosis of biliary atresia in infants and neonates. PLoS One. 2014;9: e88268. doi: 10.1371/journal.pone.0088268 24505457

8. Malayeri AA, El Khouli RH, Zaheer A, Jacobs MA, Corona-Villalobos CP, Kamel IR, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics. 2011;31: 1773–1791. doi: 10.1148/rg.316115515 21997994

9. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168: 497–505. doi: 10.1148/radiology.168.2.3393671 3393671

10. Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med. 2003;50: 727–734. doi: 10.1002/mrm.10581 14523958

11. Mo YH, Jaw FS, Ho MC, Wang YC, Peng SS. Hepatic ADC value correlates with cirrhotic severity of patients with biliary atresia. Eur J Radiol. 2011;80: e253–257. doi: 10.1016/j.ejrad.2010.11.002 21123015

12. Peng SS, Jeng YM, Hsu WM, Yang JC, Ho MC. Hepatic ADC map as an adjunct to conventional abdominal MRI to evaluate hepatic fibrotic and clinical cirrhotic severity in biliary atresia patients. Eur Radiol. 2015;25: 2992–3002. doi: 10.1007/s00330-015-3716-1 25921590

13. Liu B, Cai J, Zhu J, Zheng H, Zhang Y, Wang L. Diffusion Tensor Imaging for Evaluating Biliary Atresia in Infants and Neonates. PLoS One. 2016;11: e0168477. doi: 10.1371/journal.pone.0168477 27992499

14. Manning P, Murphy P, Wang K, Hooker J, Wolfson T, Middleton MS, et al. Liver histology and diffusion-weighted MRI in children with nonalcoholic fatty liver disease: A MAGNET study. J Magn Reson Imaging. 2017;46: 1149–1158. doi: 10.1002/jmri.25663 28225568

15. Seo N, Chung YE, Park YN, Kim E, Hwang J, Kim MJ. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI. Eur Radiol. 2018;28: 2812–2822. doi: 10.1007/s00330-017-5292-z 29404771

16. Chavhan GB, Alsabban Z, Babyn PS. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications. Radiographics. 2014;34: E73–88. doi: 10.1148/rg.343135047 24819803

17. Kanematsu M, Goshima S, Watanabe H, Kondo H, Kawada H, Noda Y, et al. Diffusion/perfusion MR imaging of the liver: practice, challenges, and future. Magn Reson Med Sci. 2012;11: 151–161 doi: 10.2463/mrms.11.151 23037559

18. Luciani A, Vignaud A, Cavet M, Nhieu JT, Mallat A, Ruel L, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology. 2008;249: 891–899. doi: 10.1148/radiol.2493080080 19011186

19. Li YT, Cercueil JP, Yuan J, Chen W, Loffroy R, Wang YX. Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant Imaging Med Surg. 2017;7: 59–78. doi: 10.21037/qims.2017.02.03 28275560

20. Shin HJ, Yoon H, Kim MJ, Han SJ, Koh H, Kim S, et al. Liver intravoxel incoherent motion diffusion-weighted imaging for the assessment of hepatic steatosis and fibrosis in children. World J Gastroenterol. 2018;24: 3013–3020. doi: 10.3748/wjg.v24.i27.3013 30038468

21. Lee MS, Kim MJ, Lee MJ, Yoon CS, Han SJ, Oh JT, et al. Biliary atresia: color doppler US findings in neonates and infants. Radiology. 2009;252: 282–289. doi: 10.1148/radiol.2522080923 19561262

22. Jerome NP, Miyazaki K, Collins DJ, Orton MR, d'Arcy JA, Wallace T, et al. Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort. Eur Radiol. 2017;27: 345–353. doi: 10.1007/s00330-016-4318-2 27003140

23. Sun S, Chen G, Zheng S, Xiao X, Xu M, Yu H, et al. Analysis of clinical parameters that contribute to the misdiagnosis of biliary atresia. J Pediatr Surg. 2013;48: 1490–1494. doi: 10.1016/j.jpedsurg.2013.02.034 23895960


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#