Insights into fungal diversity of a shallow-water hydrothermal vent field at Kueishan Island, Taiwan by culture-based and metabarcoding analyses
Autoři:
Ka-Lai Pang aff001; Sheng-Yu Guo aff001; I-An Chen aff001; Gäetan Burgaud aff002; Zhu-Hua Luo aff003; Hans U. Dahms aff004; Jiang-Shiou Hwang aff001; Yi-Li Lin aff001; Jian-Shun Huang aff001; Tsz-Wai Ho aff005; Ling-Ming Tsang aff006; Michael Wai-Lun Chiang aff007; Hyo-Jung Cha aff001
Působiště autorů:
Institute of Marine Biology and Centre of Excellence of the Oceans, National Taiwan Ocean University, Keelung, Taiwan
aff001; Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université de Brest, Plouzané, France
aff002; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
aff003; Department of Biomedical Science and Environment Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
aff004; School of Biological Sciences, University of Western Australia, Perth, Australia
aff005; School of Biological Sciences, Chinese University of Hong Kong, Kowloon Tong, Hong Kong SAR
aff006; Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
aff007
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226616
Souhrn
This paper reports the diversity of fungi associated with substrates collected at a shallow hydrothermal vent field at Kueishan Island, Taiwan, using both culture-based and metabarcoding methods. Culture of fungi from yellow sediment (with visible sulfur granules), black sediment (no visible sulfur granules), the vent crab Xenograpsus testudinatus, seawater and, animal egg samples resulted in a total of 94 isolates. Species identification based on the internal transcribed spacer regions of the rDNA revealed that the yellow sediment samples had the highest species richness with 25 species, followed by the black sediment (23) and the crab (13). The Ascomycota was dominant over the Basidiomycota; the dominant orders were Agaricales, Capnodiales, Eurotiales, Hypocreales, Pleosporales, Polyporales and Xylariales. Hortaea werneckii was the only common fungus isolated from the crab, seawater, yellow and black sediment samples. The metabarcoding analysis amplifying a small fragment of the rDNA (from 18S to 5.8S) recovered 7–27 species from the black sediment and 12–27 species from the yellow sediment samples and all species belonged to the Ascomycota and the Basidiomycota. In the yellow sediments, the dominant order was Pleosporales and this order was also dominant in the black sediment together with Sporidiobolales. Based on the results from both methods, 54 and 49 species were found in the black and yellow sediments, respectively. Overall, a higher proportion of Ascomycota (~70%) over Basidiomycota was recovered in the yellow sediment and the two phyla were equally abundant in the black sediment. The top five dominant fungal orders in descending order based on species richness were Pleosporales>Eurotiales>Polyporales>Hypocreales>Capnodiales in the black sediment samples, and Polyporales>Pleosporales>Eurotiales>Capnodiales>Hypocreales in the yellow sediment samples. This study is the first to observe a high diversity of fungi associated with various substrates at a marine shallow water hydrothermal vent ecosystem. While some fungi found in this study were terrestrial species and their airborne spores might have been deposited into the marine sediment, several pathogenic fungi of animals, including Acremonium spp., Aspergillus spp., Fusarium spp., Malassezia spp., Hortaea werneckii, Parengyodontium album, and Westerdykella dispersa, were recovered suggesting that these fungi may be able to cause diseases of marine animals.
Klíčová slova:
Fungi – Aspergillus – Islands – Marine environments – Sea water – Sediment – Crabs – Hydrothermal vents
Zdroje
1. Alker AP, Smith GW, Kim K. Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 2001;460: 105–111.
2. Gao Z, Li B, Zheng C, Wang G. Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol. 2008;74: 6091–6101. doi: 10.1128/AEM.01315-08 18676706
3. Ein-Gil N, Ilan M, Carmeli S, Smith GW, Pawlik JR, Yarden O. Presence of Aspergillus sydowii, a pathogen of gorgonian sea fans in the marine sponge Spongia obscura. ISME J. 2009;3: 752–755. doi: 10.1038/ismej.2009.18 19279670
4. Kagami M, Miki T, Takimoto G. Mycoloop: chytrids in aquatic food webs. Front Microbiol. 2014;5: 166. doi: 10.3389/fmicb.2014.00166 24795703
5. Jones EBG, Pang KL, Abdel-Wahab M, Scholz B, Hyde KD, Boekhout T, et al. An online resource for marine fungi. Fungal Divers. 2019; doi: 10.1007/s13225-019-00426-5
6. Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. PNAS 2018;115: 6506–6511. doi: 10.1073/pnas.1711842115 29784790
7. Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 2015;347: 1257594. doi: 10.1126/science.1257594 25678667
8. Herring P. The biology of the deep ocean. Oxford: Oxford University Press, England; 2001.
9. Gaboyer F, Burgaud B, Edgcomb V. The deep subseafloor and biosignatures. In: Cavalazzi B, Westall F, editors. Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics. Cham: Springer; 2019. pp. 87–109.
10. Rédou V, Kumar A, Hainaut M, Henrissat B, Record E, Barbier G, et al. Draft genome sequence of the deep-sea ascomycetous filamentous fungus Cadophora malorum Mo12 from the Mid-Atlantic Ridge reveals its biotechnological potential. Genome Announc. 2016;4: e00467–16. doi: 10.1128/genomeA.00467-16 27389260
11. Takishita K, Tsuchiya M, Reimer JD, Maruyama T. Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 2006;10: 165–169. doi: 10.1007/s00792-005-0495-7 16341819
12. Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 2007;11: 563–576. doi: 10.1007/s00792-007-0068-z 17426921
13. Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol. 2009;11: 1588–1600. doi: 10.1111/j.1462-2920.2009.01886.x 19239486
14. Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G. Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol. 2010;73: 121–133. doi: 10.1111/j.1574-6941.2010.00881.x 20455940
15. Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A. Marine subsurface eukaryotes: the fungal majority. Environ Microbiol. 2011;13: 172–183. doi: 10.1111/j.1462-2920.2010.02318.x 21199255
16. Edgcomb VP, Pachiadaki MG, Mara P, Kormas KA, Leadbetter ER, Bernhard JM. Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins. ISME J. 2016;10: 2643–2657. doi: 10.1038/ismej.2016.58 27093045
17. Ciobanu MC, Burgaud G, Dufresne A, Breuker A, Rédou V, Maamar SB, et al. Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J. 2014;8: 2352.
18. Rédou V, Ciobanu MC, Pachiadaki MG, Edgcomb V, Alain K, Barbier G, et al. In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microbiol Ecol. 2014;90: 908–921. doi: 10.1111/1574-6941.12447 25348233
19. Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G. Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol. 2015;81: 3571–3583. doi: 10.1128/AEM.04064-14 25769836
20. Liu CH, Huang X, Xie TN, Duan N, Xue YR, Zhao TX, et al. Exploration of cultivable fungal communities in deep coal-bearing sediments from ∼1.3 to 2.5 km below the ocean floor. Environ Microbiol. 2017;19: 803–818. doi: 10.1111/1462-2920.13653 28028923
21. Burgaud G, Edgcomb VP. (2019)
22. Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P. Fungal diversity in deep sea hydrothermal ecosystems. Appl Environ Microbiol. 2009;75: 6415–6421. doi: 10.1128/AEM.00653-09 19633124
23. Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol. 2011;13: 2359–2370. doi: 10.1111/j.1462-2920.2011.02507.x 21605311
24. Burgaud G, Arzur D, Sampaio JP, Barbier G. Candida oceani sp. nov., a novel yeast isolated from a Mid-Atlantic Ridge hydrothermal vent (-2300 meters). Anton van Leeuw. 2011;100: 75–82.
25. Burgaud G, Coton M, Jacques N, Debaets S, Maciel NO, Rosa CA, et al. Yamadazyma barbieri f.a. sp. nov., an ascomycetous anamorphic yeast isolated from a Mid-Atlantic Ridge hydrothermal site (-2300 m) and marine coastal waters. Int J Syst Evol Microbiol. 2016;66: 3600–3606. doi: 10.1099/ijsem.0.001239 27306608
26. Chen CTA, Wang BJ, Huang JF, Lou JY, Kuo FW, Tu YY, et al. Investigation into extremely acidic hydrothermal fluids off Kueishantao islet, Taiwan. Acta Ocean Sin. 2005;24: 125–133.
27. Yang TF, Lan TF, Lee HF, Fu CC, Chuang PC, Lo CH, et al. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochem J. 2005;39: 469–480.
28. von Corsel R. A new bathymodioline mussel (Bivalvia: Mytiloidea: Mytilidae: Bathymodiolinae) from vent sites near Kueishan Island, north east Taiwan. Raff Bull Zool. 2008;19: 105–114.
29. Kâ S, Hwang JS. Mesozooplankton distribution and composition on the northeastern coast of Taiwan during autumn: effects of the Kuroshio Current and hydrothermal vents. Zool Stud. 2011;50: 155–163.
30. Wang L, Cheung MK, Liu R, Wong CK, Kwan HS, Hwang JS. Diversity of total bacterial communities and chemoautotrophic populations in sulfur-rich sediments of shallow-water hydrothermal vents off Kueishan Island, Taiwan. Microb Ecol. 2017;73: 571–582. doi: 10.1007/s00248-016-0898-2 27909749
31. Jiang W, Zhong Y, Shen L, Wu X, Ye Y, Chen CTA, et al. Stress-driven discovery of natural products from extreme marine environment-Kueishantao hydrothermal vent, a case study of metal switch valve. Curr Org Chem. 2014;18: 925–934.
32. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and application. San Diego: Academic Press; 1990. pp. 315–322.
33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35: 1547–1549. doi: 10.1093/molbev/msy096 29722887
34. Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 2005;5: 28. doi: 10.1186/1471-2180-5-28 15904497
35. Toju H, Tanabe AS, Yamamoto S, Sato H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 2012;7: e40863. doi: 10.1371/journal.pone.0040863 22808280
36. Chi WC, Chen WL, He CC, Guo SY, Cha HJ, Tsang LM, et al. A highly diverse fungal community associated with leaves of the mangrove plant Acanthus ilicifolius var. xiamenensis revealed by isolation and metabarcoding analyses. PeerJ 2019;7:e7293. doi: 10.7717/peerj.7293 31328048
37. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Meth. 2010;7: 335–336.
38. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26: 2460–2461. doi: 10.1093/bioinformatics/btq461 20709691
39. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27: 2194–2200. doi: 10.1093/bioinformatics/btr381 21700674
40. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of Fungi. Mol Ecol. 2013;22: 5271–5277. doi: 10.1111/mec.12481 24112409
41. Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Meth Ecol Evol. 2016;7: 1451–1456.
42. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. http://www.R-project.org/.
43. Kassambara A, Mundt F. Factoextra: Extract and visualize the results of multivariate data analyses R package version 1.0.5; 2017. https://CRAN.R-project.org/package=factoextra
44. Mohamed DJ, Martiny JB. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 2011;5: 379–388. doi: 10.1038/ismej.2010.137 20882058
45. Burgaud G, Woehlke S, Rédou V, Orsi W, Beaudoin D, Barbier G, et al. Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat. Microb. Ecol. 2013;70: 45–62.
46. Pang KL, Jones EBG. Recent advances in marine mycology. Bot Mar. 2017;60: 361–362.
47. Jones EBG, Suetrong S, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015;3: 1–72.
48. Gunde-Cimerman N, Plemenitas A. Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. Rev Environ Sci Biotechnol. 2006;5: 323–331.
49. Cabañes FJ, Bragulat MR, Castellá G. Hortaea werneckii isolated from silicone scuba diving equipment in Spain. Med Mycol. 2012;50: 852–857. doi: 10.3109/13693786.2012.679628 22548240
50. Marchetta A, van den Ende BG, Al-Hatmi AMS, Hagen F, Zalar P, Sudhadham M, et al. Global molecular diversity of the halotolerant fungus Hortaea werneckii. Life 2018;8: 31. doi: 10.3390/life8030031 30041476
51. Sakayaroj J, Preedanon S, Phongpaichit S, Buatong J, Chaowalit P, Rukachaisirikul V. Diversity of endophytic and marine-derived fungi associated with marine plants and animals. In: Jones EBG, Pang KL, editors. Marine fungi and fungal-like organisms. Berlin: De Gruyter; 2012. pp. 291–328.
52. Errasti AD, Novas MV, Carmarán CC. Plant-fungal association in trees: Insights into changes in ecological strategies of Peroneutypa scoparia (Diatrypaceae). Flora 2014;209: 704–710.
53. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol. 2000;50: 1351–1371. doi: 10.1099/00207713-50-3-1351 10843082
54. Comeau AM, Vincent WF, Bernier L, Lovejoy C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep. 2016;6: 30120. doi: 10.1038/srep30120 27444055
55. Xu W, Guo S, Pang KL, Luo ZH. Fungi associated with chimney and sulfide samples from a South Mid-Atlantic Ridge hydrothermal site: distribution, diversity and abundance. Deep-Sea Res. I 2017;123: 48–55.
56. Connell L, Barrett A, Templeton A, Staudigel H. Fungal diversity associated with an active deep-sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J. 2009;26:597–605.
57. Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL. Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers. 2009;35: 1–187.
58. Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, et al. Molecular systematics of the marine Dothideomycetes. Stud Mycol. 2010;64: 155–173.
59. Jones EBG, Choeyklin R. Ecology of marine and freshwater basidiomycetes. Brit Mycol Society Symp Ser. 2008;28: 301–324.
60. Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP, et al. Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 2012;9: 1125–1136.
61. Spiers AG, Brewster DT. Evaluation of chemical and biological treatments for control of Chondrostereum purpureum infection of pruning wounds in willows, apples, and peaches. New Zeal J Crop Hort Sci. 1997;25: 19–31.
62. Cannon PF, Damm U, Johnston PR, Weir BS. (2012) Colletotrichum–current status and future directions. Stud Mycol. 2012;73: 181–213. doi: 10.3114/sim0014 23136460
63. Reeb D, Best PB, Botha A, Cloete KJ, Thornton M, Mouton M. Fungi associated with the skin of a southern right whale (Eubalaena australis) from South Africa. Mycology 2010;1: 155–162.
64. Jebaraj CS, Raghukumar C, Behnke A, Stoeck T. Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol. 2010;71: 399–412. doi: 10.1111/j.1574-6941.2009.00804.x 20002178
65. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al; NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA. Topographic diversity of fungal and bacterial communities in human skin. Nature 2013; 498: 367–370. doi: 10.1038/nature12171 23698366
66. Bonifaz A, Badali H, de Hoog GS, Cruz M, Araiza J, Cruz MA, et al. Tinea nigra by Hortaea werneckii, a report of 22 cases from Mexico. Stud Mycol. 2008;61: 77–82. doi: 10.3114/sim.2008.61.07 19287529
67. Sue PK, Gurda GT, Lee R, Watkins T, Green R, Memon W, et al. First report of Westerdykella dispersa as a cause of an angioinvasive fungal infection in a neutropenic host. J Clin Microbiol. 2014;52: 4407–4411. doi: 10.1128/JCM.02012-14 25232159
68. Tsang CC, Chan JFW, Pong WM, Chen JHK, Ngan AHY, Cheung M, et al. Cutaneous hyalohyphomycosis due to Parengyodontium album gen. et comb. nov. Med Mycol. 2016;54: 699–713. doi: 10.1093/mmy/myw025 27161787
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts