Omentin-1 in diabetes mellitus: A systematic review and meta-analysis
Autoři:
Xiongfeng Pan aff001; Atipatsa C. Kaminga aff001; Shi Wu Wen aff001; Kwabena Acheampong aff001; Aizhong Liu aff001
Působiště autorů:
Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
aff001; Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
aff002; Department of Obstetrics and Gynaecology and Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
aff003; Department of Public, School of Postgraduate Studies, Adventist University of Africa, Nairobi, Kenya
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226292
Souhrn
Objective
Previous studies found inconsistent results on the relationship between diabetes mellitus and concentrations of omentin-1. This study performed a systematic review and meta-analysis to summarize previous findings on this relationship.
Methods
Studies related to this outcome were obtained using a systematic search in the electronic databases of Cochrane Library, PubMed, Embase, SCOPUS, Google Scholar, gray literature and Web of Science in September 2019. The random effects model was used to measure the strength of the association between diabetes mellitus and concentrations of omentin-1, using standardized mean difference.
Results
Forty-two eligible studies were included in the final meta-analysis. There was no significant difference in omentin-1 concentration between patients with type 1 diabetes mellitus and the controls. On the other hand, lower concentration levels of omentin-1 were observed in patients with gestational diabetes mellitus (standardized mean difference:-0.44, 95% confidence interval:-0.76; -0.12, p = 0.007), or type 2 diabetes mellitus (standardized mean difference: -1.74, 95% confidence interval: -2.31; -1.16, p< 0.001) than in the controls.
Conclusion
Decreased omentin-1 concentrations may be an important indicator for gestational diabetes mellitus and type 2 diabetes mellitus. More studies are needed to validate this hypothesis and evaluate the role of omentin-1 concentrations in type 1 diabetes mellitus.
Klíčová slova:
Insulin – Systematic reviews – Enzyme-linked immunoassays – Database searching
Zdroje
1. Bohula EA, Scirica BM, Inzucchi SE, McGuire DK, Keech AC, Smith SR, et al. Effect of lorcaserin on prevention and remission of type 2 diabetes in overweight and obese patients (CAMELLIA-TIMI 61): a randomised, placebo-controlled trial. Lancet (London, England). 2018;392(10161):2269–79. Epub 2018/10/09. doi: 10.1016/s0140-6736(18)32328-6 30293771.
2. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet (London, England). 2018;391(10138):2449–62. Epub 2018/06/20. doi: 10.1016/s0140-6736(18)31320-5 29916386.
3. Bradshaw JM, Ensor SJA, Lorenz HAL. Gestational Diabetes and Childhood Obesity. Jama. 2019;321(7):708. Epub 2019/02/20. doi: 10.1001/jama.2018.19750 30778593.
4. Nathan DM. Diabetes: Advances in Diagnosis and Treatment. Jama. 2015;314(10):1052–62. Epub 2015/09/09. doi: 10.1001/jama.2015.9536 26348754.
5. Lotta LA, Wittemans LBL, Zuber V, Stewart ID, Sharp SJ, Luan J, et al. Association of Genetic Variants Related to Gluteofemoral vs Abdominal Fat Distribution With Type 2 Diabetes, Coronary Disease, and Cardiovascular Risk Factors. Jama. 2018;320(24):2553–63. Epub 2018/12/24. doi: 10.1001/jama.2018.19329 30575882.
6. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. Jama. 2009;302(2):179–88. Epub 2009/07/09. doi: 10.1001/jama.2009.976 19584347.
7. Subiabre M, Villalobos-Labra R, Silva L, Fuentes G, Toledo F, Sobrevia L. Role of insulin, adenosine, and adipokine receptors in the foetoplacental vascular dysfunction in gestational diabetes mellitus. Biochimica et biophysica acta Molecular basis of disease. 2019. Epub 2019/01/21. doi: 10.1016/j.bbadis.2018.12.021 30660686.
8. Vedal TSJ, Steen NE, Birkeland KI, Dieset I, Reponen EJ, Laskemoen JF, et al. Adipokine levels are associated with insulin resistance in antipsychotics users independently of BMI. Psychoneuroendocrinology. 2019;103:87–95. Epub 2019/01/20. doi: 10.1016/j.psyneuen.2019.01.001 30659986.
9. Greulich S, Chen WJ, Maxhera B, Rijzewijk LJ, van der Meer RW, Jonker JT, et al. Cardioprotective properties of omentin-1 in type 2 diabetes: evidence from clinical and in vitro studies. PLoS One. 2013;8(3):e59697. Epub 2013/04/05. doi: 10.1371/journal.pone.0059697 23555749; PubMed Central PMCID: PMC3612072.
10. Yoo HJ, Hwang SY, Hong HC, Choi HY, Yang SJ, Seo JA, et al. Association of circulating omentin-1 level with arterial stiffness and carotid plaque in type 2 diabetes. Cardiovasc Diabetol. 2011;10:103. Epub 2011/11/24. doi: 10.1186/1475-2840-10-103 22108456; PubMed Central PMCID: PMC3235986.
11. Yan P, Li L, Yang M, Liu D, Liu H, Boden G, et al. Effects of the long-acting human glucagon-like peptide-1 analog liraglutide on plasma omentin-1 levels in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011;92(3):368–74. Epub 2011/04/05. doi: 10.1016/j.diabres.2011.02.030 21458097.
12. Abdelraouf Korany M, Sonbol A, Mohamed Elgouhary S. Omentin-1 and diabetic retinopathy in type 2 diabetic patients. Alexandria Journal of Medicine. 2018;54(4):323–6. doi: 10.1016/j.ajme.2018.04.003
13. Hayashi M, Morioka T, Hatamori M, Kakutani Y, Yamazaki Y, Kurajoh M, et al. Plasma omentin levels are associated with vascular endothelial function in patients with type 2 diabetes at elevated cardiovascular risk. Diabetes Res Clin Pract. 2019;148:160–8. Epub 2019/01/15. doi: 10.1016/j.diabres.2019.01.009 30641171.
14. As´habi A, Sadeghi M, Arab A, Hajianfar H. The association between omentin and diabetes: a systematic review and meta-analysis of observational studies. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2019;Volume 12:1277–86. doi: 10.2147/DMSO.S206981 31447571
15. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clinical research ed). 2009;339:b2535. Epub 2009/07/23. doi: 10.1136/bmj.b2535 19622551; PubMed Central PMCID: PMC2714657.
16. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. Epub 2010/07/24. doi: 10.1007/s10654-010-9491-z 20652370.
17. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed). 2003;327(7414):557–60. Epub 2003/09/06. doi: 10.1136/bmj.327.7414.557 12958120; PubMed Central PMCID: PMC192859.
18. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45(Pt A):139–45. Epub 2015/09/08. doi: 10.1016/j.cct.2015.09.002 26343745; PubMed Central PMCID: PMC4639420.
19. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in medicine. 2002;21(11):1539–58. Epub 2002/07/12. doi: 10.1002/sim.1186 12111919.
20. Pan X, Wang Z, Wu X, Wen SW, Liu A. Salivary cortisol in post-traumatic stress disorder: a systematic review and meta-analysis. BMC Psychiatry. 2018;18(1):324. Epub 2018/10/07. doi: 10.1186/s12888-018-1910-9 30290789; PubMed Central PMCID: PMC6173866.
21. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed). 1997;315(7109):629–34. Epub 1997/10/06. doi: 10.1136/bmj.315.7109.629 9310563; PubMed Central PMCID: PMC2127453.
22. Hernandez AF, Green JB, Janmohamed S, D'Agostino RB Sr., Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet (London, England). 2018;392(10157):1519–29. Epub 2018/10/07. doi: 10.1016/s0140-6736(18)32261-x 30291013.
23. Ambery P, Parker VE, Stumvoll M, Posch MG, Heise T, Plum-Moerschel L, et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet (London, England). 2018;391(10140):2607–18. Epub 2018/06/28. doi: 10.1016/s0140-6736(18)30726-8 29945727.
24. Elsaid NH, Sadik NA, Ahmed NR, Fayez SE, Mohammed NAE. Serum omentin-1 levels in type 2 diabetic obese women in relation to glycemic control, insulin resistance and metabolic parameters. J Clin Transl Endocrinol. 2018;13:14–9. Epub 2018/07/20. doi: 10.1016/j.jcte.2018.05.003 30023310; PubMed Central PMCID: PMC6047309.
25. Hernandez-Diaz A, Arana-Martinez JC, Carbo R, Espinosa-Cervantes R, Sanchez-Munoz F. [Omentin: Role in insulin resistance, inflammation and cardiovascular protection]. Archivos de cardiologia de Mexico. 2016;86(3):233–43. Epub 2016/01/19. doi: 10.1016/j.acmx.2015.09.010 26778502.
26. Ceperuelo-Mallafre V, Naf S, Escote X, Caubet E, Gomez JM, Miranda M, et al. Circulating and adipose tissue gene expression of zinc-alpha2-glycoprotein in obesity: its relationship with adipokine and lipolytic gene markers in subcutaneous and visceral fat. J Clin Endocrinol Metab. 2009;94(12):5062–9. Epub 2009/10/23. doi: 10.1210/jc.2009-0764 19846741.
27. Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. American journal of physiology Endocrinology and metabolism. 2006;290(6):E1253–61. Epub 2006/03/15. doi: 10.1152/ajpendo.00572.2004 16531507.
28. Sengul E, Duygulu G, Dindar S, Bunul F. Serum omentin-1, inflammation and carotid atherosclerosis in patients with non-diabetic chronic kidney disease. Ren Fail. 2013;35(8):1089–93. Epub 2013/07/26. doi: 10.3109/0886022X.2013.817256 23883412.
29. AminiLari Z, Fararouei M, Amanat S, Sinaei E, Dianatinasab S, AminiLari M, et al. The Effect of 12 Weeks Aerobic, Resistance, and Combined Exercises on Omentin-1 Levels and Insulin Resistance among Type 2 Diabetic Middle-Aged Women. Diabetes Metab J. 2017;41(3):205–12. Epub 2017/05/26. doi: 10.4093/dmj.2017.41.3.205 28537059; PubMed Central PMCID: PMC5489501.
30. Esteghamati A, Noshad S, Rabizadeh S, Ghavami M, Zandieh A, Nakhjavani M. Comparative effects of metformin and pioglitazone on omentin and leptin concentrations in patients with newly diagnosed diabetes: a randomized clinical trial. Regul Pept. 2013;182:1–6. Epub 2013/01/19. doi: 10.1016/j.regpep.2012.12.005 23328000.
31. Arslan I. Comparative effectiveness of diet alone and diet plus metformin treatment on omentin levels in type 2 diabetes patients with nonalcoholic fatty liver disease: a prospective randomized trial. Periodicum Biologorum. 2017;119(1):9–15. doi: 10.18054/pb.v119i1.4180
32. Kaushik N, Kaushik R, Dixit P, Tyagi M, Gambhir J, Madhu SV, et al. Plasma Omentin-1 Level and its Relationship with Insulin Resistance in Obese Prediabetics. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. 2018;12. doi: 10.7860/JCDR/2018/31845.11432
33. Moreno-Navarrete JM, Ortega F, Castro A, Sabater M, Ricart W, Fernandez-Real JM. Circulating omentin as a novel biomarker of endothelial dysfunction. Obesity (Silver Spring, Md). 2011;19(8):1552–9. Epub 2011/02/05. doi: 10.1038/oby.2010.351 21293447.
34. Castano D, Larequi E, Belza I, Astudillo AM, Martinez-Anso E, Balsinde J, et al. Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation. J Hepatol. 2014;60(5):1017–25. Epub 2013/12/24. doi: 10.1016/j.jhep.2013.12.012 24362075.
35. Pan HY, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010;88(1):29–33. Epub 2010/02/05. doi: 10.1016/j.diabres.2010.01.013 20129687.
36. de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655–61. Epub 2007/03/03. doi: 10.2337/db06-1506 17329619.
37. Pan X, Kaminga AC, Wen SW, Liu A. Catecholamines in Post-traumatic Stress Disorder: A Systematic Review and Meta-Analysis. Front Mol Neurosci. 2018;11:450. Epub 2018/12/20. doi: 10.3389/fnmol.2018.00450 30564100; PubMed Central PMCID: PMC6288600.
38. Hanprasertpong T, Kor-Anantakul O, Suwanrath C, Suntharasaj T, Pruksanusak N, Hanprasertpong J, et al. Subsequent gestational diabetes mellitus prediction in advanced maternal age using amniotic fluid glucose concentration during second trimester genetic amniocentesis. Journal of obstetrics and gynaecology: the journal of the Institute of Obstetrics and Gynaecology. 2016;36(6):744–7. Epub 2016/03/29. doi: 10.3109/01443615.2016.1150261 27018498.
39. Fasshauer M, Blüher M, Stumvoll M. Adipokines in gestational diabetes. The Lancet Diabetes & Endocrinology. 2014;2(6):488–99. doi: 10.1016/s2213-8587(13)70176-1.</References>
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Somatizace stresu – typické projevy a možnosti řešení
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts