Interdependence of balance mechanisms during bipedal locomotion
Autoři:
Tyler Fettrow aff001; Hendrik Reimann aff001; David Grenet aff001; Elizabeth Thompson aff002; Jeremy Crenshaw aff001; Jill Higginson aff005; John Jeka aff001
Působiště autorů:
Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
aff001; Department of Physical Therapy, University of Delaware, Newark, DE, United States of America
aff002; Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
aff003; Department of Physical Therapy, Temple University, Philadelphia, PA, United States of America
aff004; Department of Mechanical Engineering, University of Delaware, Newark, DE, United States of America
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225902
Souhrn
Our main interest is to identify how humans maintain upright while walking. Balance during standing and walking is different, primarily due to a gait cycle which the nervous system must contend with a variety of body configurations and frequent perturbations (i.e., heel-strike). We have identified three mechanisms that healthy young adults use to respond to a visually perceived fall to the side. The lateral ankle mechanism and the foot placement mechanism are used to shift the center of pressure in the direction of the perceived fall, and the center of mass away from the perceived fall. The push-off mechanism, a systematic change in ankle plantarflexion angle in the trailing leg, results in fine adjustments to medial-lateral balance near the end of double stance. The focus here is to understand how the three basic balance mechanisms are coordinated to produce an overall balance response. The results indicate that lateral ankle and foot placement mechanisms are inversely related. Larger lateral ankle responses lead to smaller foot placement changes. Correlations involving the push-off mechanism, while significant, were weak. However, the consistency of the correlations across stimulus conditions suggest the push-off mechanism has the role of small adjustments to medial-lateral movement near the end of the balance response. This verifies that a fundamental feature of human bipedal gait is a highly flexible balance system that recruits and coordinates multiple mechanisms to maintain upright balance during walking to accommodate extreme changes in body configuration and frequent perturbations.
Klíčová slova:
Nervous system – Musculoskeletal system – Skeletal joints – Legs – Walking – Ankles – Feet – Propulsion
Zdroje
1. Winter DA, Patla AE, Prince F, Ishac M, Gielo-perczak K, Jc Q, et al. Stiffness Control of Balance in Quiet Standing. Journal of Physiology. 1998;80:1211–1221.
2. Wang Z, Newell KM. Neuroscience and Biobehavioral Reviews Inter-foot coordination dynamics of quiet standing postures. Neuroscience and Biobehavioral Reviews. 2014;47:194–202.
3. Horak FB, Nashner LM. Central Programming of Postural Movements: Adaptation to Altered Support-Surface Configurations. Journal of Neurophysiology. 1986;55(6):1369–1381. doi: 10.1152/jn.1986.55.6.1369 3734861
4. Peterka RJ. Sensorimotor integration in human postural control. Journal of neurophysiology. 2002;88:1097–1118. doi: 10.1152/jn.2002.88.3.1097 12205132
5. Oie K, Kiemel T, Jeka JJ. Multisensory function: Simultaneous re-weighting of vision and touch for the control of human posture. Cognitive Brain Research. 2002;14:164–176. doi: 10.1016/s0926-6410(02)00071-x 12063140
6. Robinovitch SN, Feldman F, Yang Y. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet Author manuscript. 2013;381(9860):47–54.
7. Tinetti M, Speechley M, Ginter S. Risk factors for falls among elderly persons living in the community. The New England Journal of Medicine. 1988;319(26):1701–1707. doi: 10.1056/NEJM198812293192604 3205267
8. Berg WR, Alessio HM, Mills EM, Chen TONG. Circumstances and consequences of falls in independent community- dwelling older adults. Age and Ageing. 1997;26:261–268. doi: 10.1093/ageing/26.4.261 9271288
9. Patla AE, Greig M. Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase. Neuroscience Letters. 2006;397(1-2):110–114. doi: 10.1016/j.neulet.2005.12.016 16413969
10. Jansen SEM, Toet A, Werkhoven PJ. Human locomotion through a multiple obstacle environment: Strategy changes as a result of visual field limitation. Experimental Brain Research. 2011;212(3):449–456. doi: 10.1007/s00221-011-2757-1 21687987
11. Rietdyk S, Rhea CK. The effect of the visual characteristics of obstacles on risk of tripping and gait parameters during locomotion. Ophthalmic and Physiological Optics. 2011;31(3):302–310. doi: 10.1111/j.1475-1313.2011.00837.x 21470274
12. Donelan JM, Kram R, Kuo AD. Mechanical and metabolic determinants of the preferred step width in human walking. Proceedings of the Royal Society B: Biological Sciences. 2001;268(1480):1985–1992. doi: 10.1098/rspb.2001.1761 11571044
13. Reimann H, Fettrow T, Thompson ED, Jeka JJ. Neural Control of Balance During Walking. Frontiers in Physiology. 2018;9:1271. doi: 10.3389/fphys.2018.01271 30271354
14. Young P, Dingwell J. Voluntarily Changing Step Length or Step Width Affects Dynamic Stability of Human Walking. 2013;70(4):646–656.
15. Yiou E, Caderby T, Delafontaine A, Fourcade P, Honeine JL. Balance control during gait initiation: State-of-the-art and research perspectives. World Journal of Orthopedics. 2017;8(11):815–828. doi: 10.5312/wjo.v8.i11.815 29184756
16. Schrager MA, Kelly VE, Price R, Ferrucci L, Shumway-Cook A. The Effects of Age on Medio-lateral Stability during Normal and Narrow Base Walking. Gait and Posture. 2009;28(3):466–471. doi: 10.1016/j.gaitpost.2008.02.009
17. Brach JS, Berlin JE, VanSwearingen JM, Newman AB, Studenski SA. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. Journal of neuroengineering and rehabilitation. 2005;2:21. doi: 10.1186/1743-0003-2-21 16042812
18. Hurt CP, Rosenblatt N, Crenshaw JR, Grabiner MD. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults. Gait and Posture. 2010;31(4):461–464. doi: 10.1016/j.gaitpost.2010.02.001 20185314
19. Iles JF, Baderin R, Tanner R, Simon A. Human standing and walking: Comparison of the effects of stimulation of the vestibular system. Experimental Brain Research. 2007;178(2):151–166. doi: 10.1007/s00221-006-0721-2 17031681
20. Vlutters M, van Asseldonk EHF, van der Kooij H. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking. The Journal of Experimental Biology. 2016;219(10):1514–1523. doi: 10.1242/jeb.129338 26994171
21. Kim M, Collins SH. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking. Journal of NeuroEngineering and Rehabilitation. 2015;12:43:1–13. doi: 10.1186/s12984-015-0027-3
22. Reimann H, Fettrow T, Jeka JJ. Strategies for the Control of Balance During Locomotion. Kinesiology Review. 2018;7:18–25. doi: 10.1123/kr.2017-0053
23. Reimann H, Fettrow TD, Thompson ED, Agada P, McFadyen BJ, Jeka JJ. Complementary mechanisms for upright balance during walking. PLoS ONE. 2017;12(2):1–16. doi: 10.1371/journal.pone.0172215
24. Davis RB III, Õunpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Human Movement Science. 1991;10(5):575–587. doi: 10.1016/0167-9457(91)90046-Z
25. Winter D, Patla AE, Frank JS. Assessment of balance control in humans. Medical progress through technology. 1990;16(1-2):31–51. 2138696
26. Tylkowski CM, Simon SR, Mansour JM. The Frank Stinchfield Award Paper. Internal rotation gait in spastic cerebral palsy. The Hip. 1982; p. 89–125.
27. Bell AL, Pedersen DR, Brand RA. A Comparison of the Accuracy of Several Hip Center. Journal of Biomechanics. 1990;23(November):617–621. doi: 10.1016/0021-9290(90)90054-7 2341423
28. Ehrig RM, Taylor WR, Duda GN, Heller MO. A survey of formal methods for determining functional joint axes. Journal of Biomechanics. 2007;40(10):2150–2157. doi: 10.1016/j.jbiomech.2006.10.026 17169365
29. Lu TW, O’Connor JJ. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of Biomechanics. 1999;32(2):129–134. doi: 10.1016/s0021-9290(98)00158-4 10052917
30. Dumas R, Chèze L, Verriest JP. Adjustments to McConville et al. and Young et al. body segment inertial parameters. Journal of Biomechanics. 2007;40(3):543–553. doi: 10.1016/j.jbiomech.2006.02.013 16616757
31. Fai AHT, Cornelius PL. Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments. Journal of Statistical Computation and Simulation. 1996;54(4):363–378. https://doi.org/10.1080/00949659608811740
32. Kuznetsova A. lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software. 2017;82:1–26. doi: 10.18637/jss.v082.i13
33. Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. Science. 2009;325(5942):883–885.
34. Hof AL, van Bockel RM, Schoppen T, Postema K. Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees. Gait and Posture. 2007;25(2):250–258. doi: 10.1016/j.gaitpost.2006.04.013 16740390
35. Hof AL, Vermerris SM, Gjaltema WA. Balance responses to lateral perturbations in human treadmill walking. The Journal of experimental biology. 2010;213(Pt 15):2655–2664. doi: 10.1242/jeb.042572 20639427
36. Klemetti R, Steele KM, Moilanen P, Avela J, Timonen J. Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking. Journal of Biomechanics. 2014;47(10):2263–2268. doi: 10.1016/j.jbiomech.2014.04.052 24873862
37. Bauby CE, Kuo AD. Active control of lateral balance in human walking. Journal of Biomechanics. 2000;33(11):1433–1440. doi: 10.1016/s0021-9290(00)00101-9 10940402
38. Wang Y, Srinivasan M. Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking. Biology Letters. 2014;10. doi: 10.1098/rsbl.2014.0405
39. Reimann H, Fettrow T, Grenet D, Thompson ED, Jeka JJ. Phase-Dependency of Medial-Lateral Balance Responses to Sensory Perturbations During Walking. Frontiers of Sports and Active Living. 2019;1(25).
40. Scholz JP, Schöner G. The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research. 1999;126(3):289–306. doi: 10.1007/s002210050738 10382616
41. Papi E, Rowe PJ, Pomeroy VM. Analysis of gait within the uncontrolled manifold hypothesis: Stabilisation of the centre of mass during gait. Journal of Biomechanics. 2015;48(2):324–331. doi: 10.1016/j.jbiomech.2014.11.024 25488137
42. Otten E. Balancing on a narrow ridge: Biomechanics and control. Philosophical Transactions of the Royal Society B: Biological Sciences. 1999;354(1385):869–875. doi: 10.1098/rstb.1999.0439
43. Rebula JR, Ojeda LV, Adamczyk PG, Kuo AD. The stabilizing properties of foot yaw in human walking. Journal of Biomechanics. 2017;53:1–8. doi: 10.1016/j.jbiomech.2016.11.059 28161109
44. Hof AL, Duysens J. Responses of human ankle muscles to mediolateral balance perturbations during walking. Human Movement Science. 2018;57:69–82. doi: 10.1016/j.humov.2017.11.009 29174418
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts