Gene expression is associated with virulence in murine macrophages infected with Leptospira spp
Autoři:
Erivelto Corrêa de Araújo Junior aff001; Leandro Encarnação Garcia aff001; Matheus Janeck Araújo aff001; Itamar Souza Oliveira-Junior aff002; Daniel Robert Arnold aff001; Flavia Lombardi Lopes aff001; Márcia Marinho aff001
Působiště autorů:
Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
aff001; Department of Surgery, Discipline of Anesthesia, Pain and Intensive Medicine, Federal University of São Paulo, São Paulo, Brazil
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225272
Souhrn
Leptospira genus contains species that affect human health with varying degrees of pathogenicity. In this context, we aimed to evaluate the differences in the modulation of host gene expression by strains of Leptospira varying in virulence. Our data showed a high number of differentially expressed transcripts in murine macrophages following 6h of infection. Leptospira infection modulated a set of genes independently of their degree of virulence. However, pathway analysis indicated that Apoptosis, ATM Signaling, and Cell Cycle: G2/M DNA Damage Checkpoint Regulation were exclusively regulated following infection with the virulent strain. Taken together, results demonstrated that species and virulence play a role during host response to Leptospira spp in murine macrophages, which could contribute to understanding the pathogenesis of leptospirosis.
Klíčová slova:
Gene expression – Cell cycle and cell division – Immune response – Apoptosis – Macrophages – DNA damage – Leptospira – Leptospira interrogans
Zdroje
1. Levett PN. Leptospirosis. Clin Microbiol Rev. 2001; 14: 296–326. doi: 10.1128/CMR.14.2.296-326.2001 11292640
2. Picardeau M, Bulach DM, Bouchier C, Zuerner RL, Zidane N, Wilson PJ, et al. Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS One. 2008; 3:e1607. doi: 10.1371/journal.pone.0001607 18270594
3. Adler B. History of leptospirosis and Leptospira. Curr Top Microbiol Immunol. 2015; 387:1–9. doi: 10.1007/978-3-662-45059-8_1 25388129
4. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, et al. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl Trop Dis. 2015;9(9):e0003898 doi: 10.1371/journal.pntd.0003898 26379143
5. Bhart AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, Lovett MA, et al. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis. 2003; 3:757–71. doi: 10.1016/s1473-3099(03)00830-2 14652202
6. Ko A, Goarant C, Picardeau M. Leptospira: the dawn of the molecular genetics for an emerging zoonotic pathogen. Nature. 2009; 7:736–47.
7. Lau CL, Smythe LD, Craig SB, Weinstein P. Climate Change, Flooding, Urbanisation and Leptospirosis: Fuelling the fire? Trans R Soc Trop Med Hyg. 2010;104: 631–638. doi: 10.1016/j.trstmh.2010.07.002 20813388
8. Torgenson PR, Hagan JE, Calcagno J, Kane M, Martinez-Silveira MS, Goris MGA, et al. Global burden of Leptospirosis: estimated in terms of disability adjusted life years. PLoS Neglec Trop Dis. 2015; 9:10e0004122
9. Lourdault K, Matsunaga J, Haake DA. High-throughput parallel sequencing to measure fitness of Leptospira interrogans transposon insertion mutants during acute infection. PLoS neglec trop dis. 2016;10(11):e0005117.
10. Coker R, Rushton J, Maurier-Jack S, Karimuribo E, Lutumba P, Kambarage D, et al. Towards a conceptual framework to support one health research for policy on emerging zoonoses. Lancet Infect Dis. 2011; 11(4): 326–31. doi: 10.1016/S1473-3099(10)70312-1 21376670
11. Adler B, de la Peña Moctezuma A. Leptospira and leptospirosis. Vet Microbiol. 2009; 140: 287–96. doi: 10.1016/j.vetmic.2009.03.012 19345023
12. Hall-Stoodley L, Stoodley P. Biofilme formation and dispersal and the transmission of human pathogens. Trends Microbiol. 2005; 13:7–10. doi: 10.1016/j.tim.2004.11.004 15639625
13. Iraola G, Spangenberg L, Lopes Bastos B, Graña M, Vasconcelos L, Almeida A, et al. Transcriptome Sequencing Reveals Wide Expression Reprogramming of Basal and Unknown Genes in Leptospira biflexa Biofilms. McMahon K, ed. mSphere. 2016;1(2):e00042–16.
14. Adler B, Faine S. Susceptibility of mice treated with cyclophosphamide to lethal infection with Leptospira interrogans serovar pomona. Infect Immun. 1976;14:703–708. 965093
15. Davis JM, Haake DA, Ramakrishnan L. Leptospira interrogans stably infects zebrafish embryos, altering phagocyte behavior and homing to specific tissues. PLoS Negl Trop Dis. 2009; 3: e463. doi: 10.1371/journal.pntd.0000463 19547748
16. Gordon S. Phagocytosis: an immunobiologic process. Immunity. 2016; 44(3):463–75. doi: 10.1016/j.immuni.2016.02.026 26982354
17. Kaufmann SH, Dorhoi A. Molecular determinants in phagocyte-bacteria interactions. Immunity. 2016; 44(3):476–91. doi: 10.1016/j.immuni.2016.02.014 26982355
18. Li S, Ojcius DM, Liao S, Li L, Xue F, Dong H, et al. Replication or death: distinct fates of pathogenic Leptospira strain Lai whitin macrophages of human or mouse origin. Innate Immun. 2010;16:80–92. doi: 10.1177/1753425909105580 19587003
19. Nahori MA, Fournie-Amazouz E, Que-Gewirth NS, Balloy V, Chignard M, Raetz CRH, et al. Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol. 2005;175: 6022–6031. doi: 10.4049/jimmunol.175.9.6022 16237097
20. Vernel-Pauillac F, Merien F. Proinflammatory and immunomodulatory cytokine mRNA time course profiles in hamsters infectes with a virulent variant of Leptospira interrogans. Infect Immun. 2006; 74:4172–4179. doi: 10.1128/IAI.00447-06 16790792
21. Patarakul K, Lo M, Adler B. Global transcriptomic response of Leptospira interrogans serovar Copenhageni upon exposure to serum. BMC Microbiol. 2010;10:(31).
22. de Araújo Junior EC, Garcia LE, Melo LM, Bragato JP, de Lima VMF, Peiró JR, et al. Transcriptome datasets of macrophages infected with different strains of Leptospira spp. Data in Brief. 2018;16:1044–1050. doi: 10.1016/j.dib.2017.12.042 29326966
23. Bouchon A, Fachhetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammations and is a crucial mediator of septic shock. Nature. 2001; 410. 1103–1107. doi: 10.1038/35074114 11323674
24. Iskandar BJ, William T, Daisy VJ. Cytokine profile of patients with leptospirosis in Sabah, Malaysia. Med J Malaysia, 2018;73(2):106–109. 29703874
25. Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic target-an updated view. Mediators Inflamm. 2013:165974.
26. Reis EA, Hagan JE, Ribeiro GS, Teixeira-Carvalho A, Martins-Filho OA, Montgomery RR, et al. Cytokine response signatures in disease progression and development of severe clinical outcomes for leptospirosis. PLoS Negl Trop Dis. 2013; 7(9):e2457. doi: 10.1371/journal.pntd.0002457 24069500
27. Shaltiei IA, Krenning L, Bruinsma W, Medema RH. The same, only different—DNA damage checkpoint and their reversal throughout the cell cycle. J Cell Sci. 2015; 128:1–14. doi: 10.1242/jcs.159418
28. Jin D, Ojcius DM, Sun D, Donh H, Luo Y, May Y, et al. Leptospira interrogans induces apoptosis in macrophages via caspase-8 and caspase-3-dependent pathways. Infec and Immunity. 2009; 77(2):799–809.
29. Garcia LE, de Araújo Junior EC, Melo LM, Bragato JP, Peiró JR, De Lima VMFet al. Characterization of the microtranscriptome of macrophages infected with virulent, attenuated and saprophyte strains of Leptospira spp. PLos Negl. Trop. Dis. 2018;12(7):e0006621. doi: 10.1371/journal.pntd.0006621 29979677
30. Hu W, Ge Y, Ojcius DM, Sun D, Dong H, Yang XF, et al. P53 Signalling Controls Cell Cycle Arrest And Caspase-Independent Apoptosis In Macrophages Infected With Pathogenic Leptospira Species. Cell Microbiol. 2013;15(10):1624–59.
31. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–113.
32. Van der Meide PH, Schellekens H. Cytokines and the immune response. Biotherapy. 1996;8(3–4):243–9. doi: 10.1007/bf01877210 8813336
33. Xue F, Zhao X, Yang Y, Zhao J, Yang Y, Cao Y, et al. Responses of Murine and Human Macrophages to Leptospiral Infection: A Study Using Comparative Array Analysis. PLoS Negl Trop Dis. 2013; 7(10): e2477. doi: 10.1371/journal.pntd.0002477 24130911
34. Rozen S, Skaletsky H. Primer3 on the www for general users and for biologist programmers. Methods Mol. Biol. 2000;132:365–86. doi: 10.1385/1-59259-192-2:365 10547847
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts