#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

MicroRNA-710 regulates multiple pathways of carcinogenesis in murine metastatic breast cancer


Autoři: Byunghee Yoo aff001;  Nikhil Meka aff002;  Patrick Sheedy aff003;  Ann-Marie Billig aff003;  Pamela Pantazopoulos aff001;  Zdravka Medarova aff001
Působiště autorů: MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America aff001;  College of Arts and Science, New York University, NY, United States of America aff002;  Department of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226356

Souhrn

Prior research has shown that critical differences between non-metastatic and metastatic tumor cells are at the level of microRNA. Consequently, harnessing these molecules for the treatment of metastatic cancer could have significant clinical impact. In the present study, we set out to identify metastasis-specific microRNAs which drive metastatic colonization of distant organs. Using a murine model of metastatic breast cancer, we employed a directed approach in which we screened for microRNAs that are differentially expressed between the primary tumors and metastatic lesions but concordantly expressed in all of the metastatic lesions irrespective of the tissue that is colonized. Of the identified targets, we focused on miR-710, which was consistently and significantly downregulated in the metastatic lesions relative to the primary tumors. The level of downregulation was independent of the distant organ that is involved, suggesting that miR-710 plays a fundamental role in metastatic colonization. Computational target prediction suggested a pleiotropic role for miR-710 in apoptosis, migration and invasion, and stemness. Using a previously validated oligonucleotide delivery system, we introduced miR-710 mimics into 4T1 metastatic breast adenocarcinoma cells and assessed the resultant phenotypic effects. We demonstrated significant inhibition of cell viability, migration, and invasion. We also showed that the treatment profoundly enhanced cell senescence, reduced stemness, and influenced markers of epithelial to mesenchymal transition, as evidenced by enhanced E-cadherin and reduced vimentin expression. This knowledge represents a first step towards harnessing a similar approach to discover novel microRNA targets with therapeutic potential in metastasis.

Klíčová slova:

Cancer treatment – MicroRNAs – Apoptosis – Biomarkers – Lesions – Metastasis – Breast cancer – Metastatic tumors


Zdroje

1. Krøigård AB, Larsen MJ, Thomassen M, Kruse TA. Molecular concordance between primary breast cancer and matched metastases. Breast J. 2016;22(4):420–30. doi: 10.1111/tbj.12596 27089067

2. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8. Epub 2007/09/28. doi: 10.1038/nature06174 17898713.

3. Yigit M, Ghosh S, Kumar M, Petkova V, Kavishwar A, Moore A, et al. Context-dependent differences in miR-10b breast oncogenesis can be targeted for the prevention and arrest of lymph node metastasis. Oncogene. 2013;32(12):1530. doi: 10.1038/onc.2012.173 22580603

4. Yoo B, Ghosh SK, Kumar M, Moore A, Yigit MV, Medarova Z. Design of nanodrugs for miRNA targeting in tumor cells. J Biomed Nanotechnol. 2014;10(6):1114–22. Epub 2014/04/23. doi: 10.1166/jbn.2014.1795 24749405; PubMed Central PMCID: PMC4174340.

5. Yoo B, Greninger P, Stein GT, Egan RK, McClanaghan J, Moore A, et al. Potent and selective effect of the mir-10b inhibitor MN-anti-mir10b in human cancer cells of diverse primary disease origin. PloS One. 2018;13(7):e0201046. doi: 10.1371/journal.pone.0201046 30028875

6. Yoo B, Kavishwar A, Ross A, Wang P, Tabassum DP, Polyak K, et al. Combining miR-10b–targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast cancer. Cancer Res. 2015;75(20):4407–15. doi: 10.1158/0008-5472.CAN-15-0888 26359455

7. Yoo B, Kavishwar A, Wang P, Ross A, Pantazopoulos P, Dudley M, et al. Therapy targeted to the metastatic niche is effective in a model of stage IV breast cancer. Sci Rep. 2017;7:45060. doi: 10.1038/srep45060 28322342

8. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4. Epub 2015/08/13. doi: 10.7554/eLife.05005 26267216; PubMed Central PMCID: PMC4532895.

9. Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):18. Epub 2019/01/24. doi: 10.1186/s13059-019-1629-z 30670076; PubMed Central PMCID: PMC6341724.

10. Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43(Database issue):D146–52. Epub 2014/11/08. doi: 10.1093/nar/gku1104 25378301; PubMed Central PMCID: PMC4383922.

11. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. Epub 2009/01/10. doi: 10.1038/nprot.2008.211 19131956.

12. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. Epub 2008/11/27. doi: 10.1093/nar/gkn923 19033363; PubMed Central PMCID: PMC2615629.

13. Medarova Z, Balcioglu M, Yigit MV. Controlling RNA Expression in Cancer Using Iron Oxide Nanoparticles Detectable by MRI and In Vivo Optical Imaging. Methods Mol Biol. 2016;1372:163–79. Epub 2015/11/05. doi: 10.1007/978-1-4939-3148-4_13 26530923.

14. Cejalvo JM, Martinez de Duenas E, Galvan P, Garcia-Recio S, Burgues Gasion O, Pare L, et al. Intrinsic Subtypes and Gene Expression Profiles in Primary and Metastatic Breast Cancer. Cancer Res. 2017;77(9):2213–21. Epub 2017/03/03. doi: 10.1158/0008-5472.CAN-16-2717 28249905; PubMed Central PMCID: PMC5822682.

15. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526(7571):131–5. Epub 2015/09/30. doi: 10.1038/nature15260 26416748; PubMed Central PMCID: PMC4648562.

16. McGuire A, Brown JA, Kerin MJ. Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev. 2015;34(1):145–55. Epub 2015/02/28. doi: 10.1007/s10555-015-9551-7 25721950; PubMed Central PMCID: PMC4368851.

17. Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med. 2007;13(3):372. doi: 10.1038/nm1486 17322898

18. James C, Zhao TY, Rahim A, Saxena P, Muthalif NA, Uemura T, et al. MINDY1 Is a Downstream Target of the Polyamines and Promotes Embryonic Stem Cell Self-Renewal. Stem Cells. 2018;36(8):1170–8. Epub 2018/04/13. doi: 10.1002/stem.2830 29644784.

19. Chang L, Qi H, Xiao Y, Li C, Wang Y, Guo T, et al. Integrated analysis of noncoding RNAs and mRNAs reveals their potential roles in the biological activities of the growth hormone receptor. Growth Horm IGF Res. 2016;29:11–20. Epub 2016/04/12. doi: 10.1016/j.ghir.2016.03.003 27064376.

20. Endres K, Deller T. Regulation of Alpha-Secretase ADAM10 In vitro and In vivo: Genetic, Epigenetic, and Protein-Based Mechanisms. Front Mol Neurosci. 2017;10:56. Epub 2017/04/04. doi: 10.3389/fnmol.2017.00056 28367112; PubMed Central PMCID: PMC5355436.

21. Ehnman M, Missiaglia E, Folestad E, Selfe J, Strell C, Thway K, et al. Distinct effects of ligand-induced PDGFRalpha and PDGFRbeta signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res. 2013;73(7):2139–49. Epub 2013/01/23. doi: 10.1158/0008-5472.CAN-12-1646 23338608; PubMed Central PMCID: PMC3672973.

22. Tan M, Asad M, Heong V, Wong MK, Tan TZ, Ye J, et al. The FZD7-TWIST1 axis is responsible for anoikis resistance and tumorigenesis in ovarian carcinoma. Mol Oncol. 2019;13(4):757–80. Epub 2018/12/15. doi: 10.1002/1878-0261.12425 30548372; PubMed Central PMCID: PMC6441896.

23. Medarova Z, Kumar M, Ng S-w, Moore A. Development and application of a dual-purpose nanoparticle platform for delivery and imaging of siRNA in tumors. Therapeutic Applications of RNAi: Springer; 2009. p. 1–13.

24. Kumar M, Yigit M, Dai G, Moore A, Medarova Z. Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res. 2010;70(19):7553–61. doi: 10.1158/0008-5472.CAN-10-2070 20702603

25. Ghosh SK, Yigit MV, Uchida M, Ross AW, Barteneva N, Moore A, et al. Sequence‐dependent combination therapy with doxorubicin and a survivin‐specific small interfering RNA nanodrug demonstrates efficacy in models of adenocarcinoma. Int J Cancer. 2014;134(7):1758–66. doi: 10.1002/ijc.28499 24114765

26. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52. Epub 2008/01/11. doi: 10.1038/nature06487 18185580; PubMed Central PMCID: PMC2782491.

27. Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem. 2009;284(46):31921–7. Epub 2009/09/03. doi: 10.1074/jbc.M109.046862 19723635; PubMed Central PMCID: PMC2797263.

28. Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y, et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol. 2013;15(3):284–94. Epub 2013/02/12. doi: 10.1038/ncb2690 23396050; PubMed Central PMCID: PMC3672398.

29. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23. Epub 2007/12/18. doi: 10.1016/j.cell.2007.10.054 18083101.

30. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5. Epub 2011/01/18. PubMed Central PMCID: PMC3076220. doi: 10.1038/nm.2284 21240262

31. Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao HP, et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun. 2017;8:14270. Epub 2017/01/24. doi: 10.1038/ncomms14270 28112170; PubMed Central PMCID: PMC5264244.

32. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601. Epub 2008/04/01. doi: 10.1038/ncb1722 18376396.

33. Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC, et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. 2014;512(7515):431–5. Epub 2014/07/22. doi: 10.1038/nature13375 25043055; PubMed Central PMCID: PMC4149606.

34. Kim J, Yao F, Xiao Z, Sun Y, Ma L. MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev. 2018;37(1):5–15. Epub 2017/12/14. doi: 10.1007/s10555-017-9712-y 29234933; PubMed Central PMCID: PMC5803344.


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#