De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines
Autoři:
Bráulio S. M. L. Silva aff001; Pedro Heringer aff001; Guilherme B. Dias aff001; Marta Svartman aff001; Gustavo C. S. Kuhn aff001
Působiště autorů:
Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
aff001
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223466
Souhrn
Satellite DNAs are among the most abundant repetitive DNAs found in eukaryote genomes, where they participate in a variety of biological roles, from being components of important chromosome structures to gene regulation. Experimental methodologies used before the genomic era were insufficient, too laborious and time-consuming to recover the collection of all satDNAs from a genome. Today, the availability of whole sequenced genomes combined with the development of specific bioinformatic tools are expected to foster the identification of virtually all the “satellitome” of a particular species. While whole genome assemblies are important to obtain a global view of genome organization, most of them are incomplete and lack repetitive regions. We applied short-read sequencing and similarity clustering in order to perform a de novo identification of the most abundant satellite families in two Drosophila species from the virilis group: Drosophila virilis and D. americana, using the Tandem Repeat Analyzer (TAREAN) and RepeatExplorer pipelines. These species were chosen because they have been used as models to understand satDNA biology since the early 70’s. We combined the computational approach with data from the literature and chromosome mapping to obtain an overview of the major tandem repeat sequences of these species. The fact that all of the abundant tandem repeats (TRs) we detected were previously identified in the literature allowed us to evaluate the efficiency of TAREAN in correctly identifying true satDNAs. Our results indicate that raw sequencing reads can be efficiently used to detect satDNAs, but that abundant tandem repeats present in dispersed arrays or associated with transposable elements are frequent false positives. We demonstrate that TAREAN with its parent method RepeatExplorer may be used as resources to detect tandem repeats associated with transposable elements and also to reveal families of dispersed tandem repeats.
Klíčová slova:
Transposable elements – Genome analysis – Drosophila – Drosophila melanogaster – Clustering algorithms – Invertebrate genomics – Tandem repeats – Polytene chromosomes
Zdroje
1. de Koning APJ, Gu WJ, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two thirds of the human genome. PLoS genetics. 2011;7(12). https://doi.org/10.1371/journal.pgen.1002384 22144907
2. Biscotti MA, Olmo E, Heslop-Harrison JS. Repetitive DNA in eukaryotic genomes. Chromosome Research. 2015;23(3):415–20. https://doi.org/10.1007/s10577-015-9499-z 26514350
3. Tautz D. Notes on the fefinition and nomenclature of tandemly repetitive DNA sequences. Exs. 1993;67:21–8. https://doi.org/10.1007/978-3-0348-8583-6_2 8400689
4. Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371(6494):215–20. https://doi.org/10.1038/371215a0 8078581
5. Kuhn GCS, Kuttler H, Moreira O, Heslop-Harrison JS. The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. Mol Biol Evol. 2012;29(1):7–11. https://doi.org/10.1093/molbev/msr173 21712468
6. Pavlek M, Gelfand Y, Plohl M, Mestrovic N. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Research. 2015;22(6):387–401. https://doi.org/10.1093/dnares/dsv021 26428853
7. Rosic S, Kohler F, Erhardt S. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division (vol 207, pg 335, 2014). J Cell Biol. 2014;207(5):673-. https://doi.org/10.1083/jcb.201404097 25365994
8. Kursel LE, Malik HS. The cellular mechanisms and consequences of centromere drive. Curr Opin Cell Biol. 2018;52:58–65. https://doi.org/10.1016/j.ceb.2018.01.011 29454259
9. Bracewell R, Chatla K, Nalley MJ, Bachtrog D. Dynamic turnover of centromeres drives karyotype evolution in Drosophila. BioRxiv [PrePrint]. 2019:733527. [posted 2019 Aug 27] https://www.biorxiv.org/content/10.1101/733527v1.full. https://doi.org/10.1101/733527 31524597
10. Kuhn GCS, Sene FM, Moreira-Filho O, Schwarzacher T, Heslop-Harrison JS. Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster. Chromosome Research. 2008;16(2):307–24. https://doi.org/10.1007/s10577-007-1195-1 18266060
11. Plohl M, Meštrović N, Mravinac B. Satellite DNA evolution. Repetitive DNA: Karger Publishers; 2012. p. 126–52. https://doi.org/10.1159/000337122
12. Garrido-Ramos MA. Satellite DNA: an evolving topic. Genes-Basel. 2017;8(9). https://doi.org/10.3390/genes8090230 28926993
13. Ferree PM, Barbash DA. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. Plos Biol. 2009;7(10). https://doi.org/10.1371/journal.pbio.1000234 19859525
14. Strachan T, Webb D, Dover GA. Transition stages of molecular drive in multiple-copy DNA families in Drosophila. Embo J. 1985;4(7):1701–8. https://doi.org/10.1002/j.1460-2075.1985.tb03839.x 16453627
15. Bachmann L, Sperlich D. Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura. Mol Biol Evol. 1993;10(3):647–59. https://doi.org/10.1093/oxfordjournals.molbev.a040029 8336547
16. Dias GB, Svartman M, Delprat A, Ruiz A, Kuhn GCS. Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis. Genome Biol Evol. 2014;6(6):1302–13. https://doi.org/10.1093/gbe/evu108 24858539
17. Khost DE, Eickbush DG, Larracuente AM. Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster. Genome research. 2017;27(5):709–21. https://doi.org/10.1101/gr.213512.116 28373483
18. Wei KHC, Lower SE, Caldas IV, Sless TJS, Barbash DA, Clark AG. Variable rates of simple satellite gains across the Drosophila phylogeny. Mol Biol Evol. 2018;35(4):925–41. https://doi.org/10.1093/molbev/msy005 29361128
19. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature Reviews Genetics. 2012;13(1):36. https://doi.org/10.1038/nrg3117 22124482
20. Novak P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–3. https://doi.org/10.1093/bioinformatics/btt054 23376349
21. Novak P, Robledillo LA, Koblizkova A, Vrbova I, Neumann P, Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic acids research. 2017;45(12). https://doi.org/10.1093/nar/gkx257 28402514
22. Ruiz-Ruano FJ, Lopez-Leon MD, Cabrero J, Camacho JPM. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Scientific reports. 2016;6. https://doi.org/10.1038/srep28333 27385065
23. de Lima LG, Svartman M, Kuhn GCS. Dissecting the satellite DNA landscape in three cactophilic Drosophila sequenced genomes. G3-Genes Genom Genet. 2017;7(8):2831–43. https://doi.org/10.1534/g3.117.042093 28659292
24. Palacios-Gimenez OM, Dias GB, de Lima LG, Kuhn GCES, Ramos E, Martins C, et al. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Scientific reports. 2017;7. https://doi.org/10.1038/s41598-017-06822-8 28743997
25. Utsunomia R, Silva DMZD, Ruiz-Ruano FJ, Goes CAG, Melo S, Ramos LPE, et al. Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Scientific reports. 2019;9. https://doi.org/10.1038/s41598-019-42383-8 30971780
26. Liu Q, Li XY, Zhou XY, Li MZ, Zhang FJ, Schwarzacher T, et al. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. Bmc Plant Biol. 2019;19. https://doi.org/10.1186/s12870-019-1769-z 31146681
27. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287(5461):2185–95. Epub 2000/03/25. https://doi.org/10.1126/science.287.5461.2185 10731132
28. Bosco G, Campbell P, Leiva-Neto JT, Markow TA. Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics. 2007;177(3):1277–90. https://doi.org/10.1534/genetics.107.075069 18039867
29. Miklos G. Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes. Molecular evolutionary genetics. 1985:241–321.
30. Gregory TR, Johnston JS. Genome size diversity in the family Drosophilidae. Heredity. 2008;101(3):228–38. https://doi.org/10.1038/hdy.2008.49 18523443
31. Craddock EM, Gall JG, Jonas M. Hawaiian Drosophila genomes: size variation and evolutionary expansions. Genetica. 2016;144(1):107–24. Epub 2016/01/23. https://doi.org/10.1007/s10709-016-9882-5 26790663
32. Gall JG, Cohen EH, Polan ML. Repetitive DNA sequences in Drosophila. Chromosoma. 1971;33(3):319-+. https://doi.org/10.1007/BF00284948 5088497
33. Gall JG, Atherton DD. Satellite DNA sequences in Drosophila virilis. J Mol Biol. 1974;85(4):633–64. https://doi.org/10.1016/0022-2836(74)90321-0 4854195
34. Heikkinen E, Launonen V, Muller E, Bachmann L. The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements. Journal of molecular evolution. 1995;41(5):604–14. https://doi.org/10.1007/BF00175819 7490775
35. Biessmann H, Zurovcova M, Yao JG, Lozovskaya E, Walter MF. A telomeric satellite in Drosophila virilis and its sibling species. Chromosoma. 2000;109(6):372–80. https://doi.org/10.1007/s004120000094 11072792
36. Dias GB, Heringer P, Svartman M, Kuhn GC. Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in alpha and beta-heterochromatin, satellite DNA emergence, and piRNA expression. Chromosome research: an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 2015;23(3):597–613. Epub 2015/09/27. https://doi.org/10.1007/s10577-015-9480-x 26408292
37. Abdurashitov MA, Gonchar DA, Chernukhin VA, Tomilov VN, Tomilova JE, Schostak NG, et al. Medium-sized tandem repeats represent an abundant component of the Drosophila virilis genome. BMC genomics. 2013;14:771. Epub 2013/11/12. https://doi.org/10.1186/1471-2164-14-771 24209985
38. Garcia G, Rios N, Gutierrez V. Next-generation sequencing detects repetitive elements expansion in giant genomes of annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae). Genetica. 2015;143(3):353–60. Epub 2015/03/21. https://doi.org/10.1007/s10709-015-9834-5 25792372
39. Robledillo LÁ, Koblížková A, Novák P, Böttinger K, Vrbová I, Neumann P, et al. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Scientific reports. 2018;8(1):5838. https://doi.org/10.1038/s41598-018-24196-3 29643436
40. Ugarkovic D, Plohl M. Variation in satellite DNA profiles—causes and effects. Embo J. 2002;21(22):5955–9. https://doi.org/10.1093/emboj/cdf612 12426367
41. Morales-Hojas R, Reis M, Vieira CP, Vieira J. Resolving the phylogenetic relationships and evolutionary history of the Drosophila virilis group using multilocus data. Mol Phylogenet Evol. 2011;60(2):249–58. https://doi.org/10.1016/j.ympev.2011.04.022 21571080
42. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research. 2016;44(W1):W3–W10. https://doi.org/10.1093/nar/gkw343 27137889
43. Fonseca NA, Morales-Hojas R, Reis M, Rocha H, Vieira CP, Nolte V, et al. Drosophila americana as a model species for comparative studies on the molecular basis of phenotypic variation. Genome Biol Evol. 2013;5(4):661–79. https://doi.org/10.1093/gbe/evt037 23493635
44. Baimai V. Chromosomal Polymorphisms of Constitutive Heterochromatin and inversions in Drosophila. Genetics. 1977;85(1):85–93. 838273
45. Ashburner M. Drosophila. A laboratory handbook: Cold spring harbor laboratory press; 1989. ISBN: 0879693215
46. Flynn JM, Long M, Wing RA, Clark AG. Evolutionary dynamics of abundant 7 bp satellites in the genome of Drosophila virilis. BioRxiv [PrePrint]. 2019:693077 [posted 2019 July 4] https://www.biorxiv.org/content/10.1101/693077v1.full. https://doi.org/10.1101/693077
47. Gubenko IS, Evgenev MB. Cytological and linkage maps of Drosophila virilis chromosomes. Genetica. 1984;65(2):127–39. https://doi.org/10.1007/BF00135277.
48. Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome biology. 2013;14(1). https://doi.org/10.1186/gb-2013-14-1-r10 23363705
49. Zelentsova ES, Vashakidze RP, Krayev AS, Evgenev MB. Dispersed repeats in Drosophila virilis: elements mobilized by interspecific hybridization. Chromosoma. 1986;93(6):469–76. https://doi.org/10.1007/BF00386786
50. Roy V, Monti-Dedieu L, Chaminade N, Siljak-Yakovlev S, Aulard S, Lemeunier F, et al. Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: ananassae and melanogaster. Heredity. 2005;94(4):388. https://doi.org/10.1038/sj.hdy.6800612 15726113
51. Wei KH, Grenier JK, Barbash DA, Clark AG. Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster. Proc Natl Acad Sci U S A. 2014;111(52):18793–8. https://doi.org/10.1073/pnas.1421951112 25512552
52. Cohen EH, Bowman SC. Detection and location of three simple sequence DNAs in polytene chromosomes from virilis group species of Drosophila. Chromosoma. 1979;73(3):327–55. Epub 1979/08/01. https://doi.org/10.1007/BF00288696 510073
53. Mestrovic N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Satovic E, Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Research. 2015;23(3):583–96. https://doi.org/10.1007/s10577-015-9483-7 26293606
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Somatizace stresu – typické projevy a možnosti řešení
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts