#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Estimation of membrane bending modulus of stiffness tuned human red blood cells from micropore filtration studies


Autoři: Rekha Selvan aff001;  Praveen Parthasarathi aff002;  Shruthi S. Iyengar aff001;  Sharath Ananthamurthy aff001;  Sarbari Bhattacharya aff001
Působiště autorů: Department of Physics, Bangalore University, Bangalore, India aff001;  Soft Condensed Matter Group, Raman Research Institute, Bangalore, India aff002;  School of Physics, University of Hyderabad, Hyderabad, Telangana, India aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226640

Souhrn

Human red blood cells (RBCs) need to deform in order to pass through capillaries in human vasculature with diameter smaller than that of the RBC. An altered RBC cell membrane stiffness (CMS), thereby, is likely to have consequences on their flow rate. RBC CMS is known to be affected by several commonly encountered disease conditions. This study was carried out to investigate whether an increase in RBC CMS, to the extent seen in such commonly encountered medical conditions, affects the RBC flow rate through channels with diameters comparable to that of the RBC. To do this, we use RBCs extracted from a healthy individual with no known medical conditions and treated with various concentrations of Bovine Serum Albumin (BSA). We study their flow through polycarbonate membranes with pores of diameter 5μm and 8μm which are smaller than and comparable to the RBC diameter respectively. The studies are carried out at constant hematocrit and volumetric flow rate. We find that when the diameter of the capillary is smaller than that of the RBC, the flow rate of the RBCs is lowered as the concentration of BSA is increased while the reverse is true when the diameter is comparable to that of the RBC. We confirm that this is a consequence of altered CMS of the RBCs from their reorientation dynamics in an Optical Tweezer. We find that a treatment with 0.50mg/ml BSA mimics the situation for RBCs extracted from a healthy individual while concentrations higher than 0.50mg/ml elevate the RBC CMS across a range expected for individuals with a condition of hyperglycemia. Using a simple theoretical model of the RBC deformation process at the entry of a narrow channel, we extract the RBC membrane bending modulus from their flow rate.

Klíčová slova:

Filter paper – Radii – Lasers – Deformation – Flow rate – Hematocrit – Drag – Bending


Zdroje

1. Jensen FB. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J Exp Biol. 2009;212:3387. doi: 10.1242/jeb.023697 19837879

2. Gompper G, Schick M. vol. 4. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; 2008.

3. Tomaiuolo G, Simeone M, Martinelli V, Rotoli B, Guido S. Red blood cell deformation in micro—confined flow. Soft Matter. 2009;5:3736. doi: 10.1039/b904584h

4. Braunmuller S, Schmid L, Sackmann E, Franke T, et al. Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation. Soft Matter. 2012;8:11240. doi: 10.1039/c2sm26513c

5. Quinn DJ, et al. Combined Simulation and experimental study of large deformation of red blood cells in microfluidic systems. Ann Biomed Eng. 2011;39(3):1041. doi: 10.1007/s10439-010-0232-y 21240637

6. Babu N, Singh M. Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes. Clin Hemorheol. 2004;31:273.

7. Tsukada K, Sekizuka E, Oshio C, Minamitani H. Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillarymodel and high- speed video camera system. Microvasc Res. 2001;61:231. doi: 10.1006/mvre.2001.2307 11336534

8. Moon JS, et al. Impaired RBC deformability is associated with diabetic retinopathy in patients with type 2 diabetes. Diabetes Metab. 2016;42(6):448. doi: 10.1016/j.diabet.2016.04.008 27209441

9. Singh M, Kumravel M. Influence of jaundice on aggregation process and deformability of erythrocytes. Clin Hemorheol Microcirc. 1995;15(3):273. doi: 10.3233/CH-1995-15301

10. Dobbe JGG, et al. Analyzing Red Blood Cell Deformability Distributions. Blood Cells Mol Dis. 2002;28(3):373. doi: 10.1006/bcmd.2002.0528 12367581

11. Glenister FK, Coppel RL, Cowman AF, Mohandas N, Cooke BM. Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood. 2002;99:1060. doi: 10.1182/blood.v99.3.1060 11807013

12. Evans EA. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J. 1983;43(1):27. doi: 10.1016/S0006-3495(83)84319-7 6882860

13. Chien S, Paul KL, Skalak R, Usami S, Tözeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J. 1978;24(2):463. doi: 10.1016/S0006-3495(78)85395-8 728524

14. Parthasarathi P, et al. Orientational dynamics of human red blood cells in an optical trap. J Biomed Opt. 2013;18(2):025001. doi: 10.1117/1.JBO.18.2.025001

15. Agarwal R, et al. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Sci Rep. 2016;6:15873. doi: 10.1038/srep15873

16. Barnes T, Shulman A, Farone A, Farone M, Erenso D. Assessment of the elasticity of erythrocytes in different physiological fluids by laser traps. OPJ. 2013;3:211. doi: 10.4236/opj.2013.32034

17. Henon S, Lenormand G, Richert A, Gallet F. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J. 1999;76(2):1145. doi: 10.1016/S0006-3495(99)77279-6 9916046

18. Alster Y, Loewenstein A, Levin S, Lazar M, Korenstein R. Low-frequency submicron fluctuations of red blood cells in diabetic retinopathy. Arch Ophthalmol. 1998;116(10):1321. doi: 10.1001/archopht.116.10.1321 9790630

19. Evans J, Gratzer W, Mohandas N, Parker K, Sleep J. Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. Biophys J. 2008;94(10):4134. doi: 10.1529/biophysj.107.117952 18234829

20. Yang T, Bragheri F, Minzioni PA. Comprehensive review of optical stretcher for cell mechanical characterization at single-cell level. Micromachines. 2016;7(5):90. doi: 10.3390/mi7050090

21. Guck J, et al. The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells. Biophys J. 2001;81:767. doi: 10.1016/S0006-3495(01)75740-2 11463624

22. Zheng Y, Nguyen J, Wang C, Sun Y. Electrical measurement of red blood cell deformability on a microfluidic device. Lab Chip. 2013;13:3275. doi: 10.1039/c3lc50427a 23798004

23. Gosett DR, et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS. 2012;109(20):7630. doi: 10.1073/pnas.1200107109

24. Dulińska I, et al. Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Meth. 2006;66:1. doi: 10.1016/j.jbbm.2005.11.003 16443279

25. Maciaszek JL, Lykotrafitis G. Sickle cell trait human erythrocytes are significantly stiffer than normal. J Biomech. 2011;44:657. doi: 10.1016/j.jbiomech.2010.11.008 21111421

26. Zhang W, Liu F. Effect of polylysine on blood clotting, and red blood cell morphology, aggregation and hemolysis. J Nanosci Nanotechnol. 2017;17(1):251. doi: 10.1166/jnn.2017.12593 29620337

27. Kim J, Lee H, Shin S. Advances in the measurement of red blood cell deformability: A brief review Article. J Cell Biotechnol. 2015;1:63. doi: 10.3233/JCB-15007

28. Brown CD, Ghali HS, Zhao Z, Thomas LL, Friedman EA. Association of reduced red blood cell deformability and diabetic nephropathy. Kidney Int. 2005;67:295. doi: 10.1111/j.1523-1755.2005.00082.x 15610255

29. Moia M, Tripodi A, Mozzi E, Mari D, Mannucci PM. An improved method for measuring red blood cell filterability. Ric Clin Lab. 1985;15(2):127. doi: 10.1007/bf03029829 4059793

30. Kirkpatrick UJ, Adams RA, Lardi A, McCollum CN. Rheological properties and function of blood cells in stored bank blood and salvaged blood. Br J Haematol. 1998;101:364. doi: 10.1046/j.1365-2141.1998.00689.x 9609536

31. Shin S, Ku Y, Babu N, Singh M. Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol. 2007;45:121. 17249336

32. Yoon YZ, Kotar J, Brown A, Cicuta P. Red blood cell dynamics: from spontaneous fluctuations to non-linear response. Soft Matter. 2011;7:2042. doi: 10.1039/C0SM01117G

33. Jay A. Geometry of the human erythrocyte -I. Effect of albumin on cell geometry. Biophys J. 1975;15:205. doi: 10.1016/S0006-3495(75)85812-7 1122337

34. Williams A. The effect of bovine and human serum albumins on the mechanical properties of human erythrocyte membranes. Biochim Biophys Acta. 1973;307:58. doi: 10.1016/0005-2736(73)90024-2 4736380

35. Starosta W. Applications of ionizing radiation in materials processing. vol. 2. Institute of Nuclear Chemistry and Technology Warszawa; 2017.

36. Jeong JH, Sugii Y, Minamiyama M, Okamoto K. Measurement of RBC deformation and velocity in capillaries in vivo. Microvasc Res. 2006;71:212. doi: 10.1016/j.mvr.2006.02.006 16624342

37. Stucker M, et al. Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: Measured by a new Doppler laser anemometer. Microvasc Res. 1996;52:188. doi: 10.1006/mvre.1996.0054 8901447

38. Omori T, Ishikawa T, Barthès-Biesel D, et al. Tension of red blood cell membrane in simple shear flow. PRE. 2012;86:056321. doi: 10.1103/PhysRevE.86.056321 23214889

39. Chen TC, Skalak R. Stokes flow in a cylindrical tube containing a line of spheroidal particles. Appl Sci Res. 1970;22:403. doi: 10.1007/BF00400546

40. Yawata Y. Cell Membrane: The Red Blood Cell as a Model. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; 2003.

41. Fedosov DA, Peltomäki M, Gompper G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter. 2014;10:4258. doi: 10.1039/c4sm00248b 24752231

42. Munoz S, Sebastián JL, Sancho M, et al. Elastic energy of the discocyte– stomatocyte transformation. BBA. 2014;1838(3):950. doi: 10.1016/j.bbamem.2013.10.020 24192054

43. Tanford C, Buzell JG. The viscosity of aqueous solutions of bovine serum albumin between pH 4.3 and 10.5. J Phys Chem. 1956;60(2):225. doi: 10.1021/j150536a020

44. Tan CY, Huang YX. Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution. J Chem Eng. 2015;60:2827.

45. Zhang J, Johnson PC, Popel AS. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc Res. 2009;77(3):265. doi: 10.1016/j.mvr.2009.01.010 19323969

46. Xia Y, Callaghan PT, Jeffrey KR. Imaging velocity profiles: flow through an abrupt contraction and expansion. AlChE J. 1992;38(9):1408. doi: 10.1002/aic.690380912


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#