A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses
Autoři:
Kerry L. Howell aff001; Jaime S. Davies aff001; A. Louise Allcock aff002; Andreia Braga-Henriques aff003; Pål Buhl-Mortensen aff005; Marina Carreiro-Silva aff006; Carlos Dominguez-Carrió aff006; Jennifer M. Durden aff008; Nicola L. Foster aff001; Chloe A. Game aff009; Becky Hitchin aff010; Tammy Horton aff008; Brett Hosking aff008; Daniel O. B. Jones aff008; Christopher Mah aff011; Claire Laguionie Marchais aff002; Lenaick Menot aff012; Telmo Morato aff006; Tabitha R. R. Pearman aff008; Nils Piechaud aff001; Rebecca E. Ross aff001; Henry A. Ruhl aff008; Hanieh Saeedi aff014; Paris V. Stefanoudis aff017; Gerald H. Taranto aff006; Michael B. Thompson aff019; James R. Taylor aff020; Paul Tyler aff021; Johanne Vad aff022; Lissette Victorero aff023; Rui P. Vieira aff020; Lucy C. Woodall aff016; Joana R. Xavier aff027; Daniel Wagner aff029
Působiště autorů:
School of Biological and Marine Science, Plymouth University, Drake Circus, Plymouth, United Kingdom
aff001; Zoology, School of Natural Sciences, and Ryan Institute, National University of Ireland, Galway, Galway, Ireland
aff002; MARE-Marine and Environmental Sciences Centre, Estação de Biologia Marinha do Funchal, Cais do Carvão, Funchal, Madeira Island, Portugal
aff003; ARDITI-Regional Agency for the Development of Research, Technology and Innovation, Oceanic Observatory of Madeira (OOM), Madeira Tecnopolo, Caminho da Penteada, Funchal, Portugal
aff004; Institute of Marine Research,Nordnes, Bergen, Norway
aff005; Okeanos Research Centre, Universidade dos Açores, Departamento de Oceanografia e Pesca, Horta, Portugal
aff006; IMAR Instituto do Mar, Marine and Environmental Sciences Centre (MARE), Universidade dos Açores, Horta, Portugal
aff007; National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, United Kingdom
aff008; School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
aff009; JNCC, Inverdee House, Aberdeen, United Kingdom
aff010; Dept. of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America
aff011; Ifremer, Centre de Bretagne, Plouzané, France
aff012; Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States of America
aff013; Senckenberg Research Institute and Natural History Museum; Department of Marine Zoology, Frankfurt am Main, Germany
aff014; Goethe University Frankfurt, Institute for Ecology, Diversity and Evolution, Frankfurt am Main, Germany
aff015; OBIS Data Manager, Deep-Sea Node
aff016; Nekton Foundation, Begbroke Science Park, Begbroke Hill, Begbroke, Oxfordshire, United Kingdom
aff017; Department of Zoology, University of Oxford, Zoology Research and Administration Building, Oxford, United Kingdom
aff018; Gardline Limited, Endeavour House, Great Yarmouth, Norfolk, United Kingdom
aff019; Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Martin-Luthur-King-Platz, Hamburg, Germany
aff020; School of Ocean and Earth Science National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, United Kingdom
aff021; Grant Institute, School of Geosciences, The University of Edinburgh, The King’s Buildings, Edinburgh, United Kingdom
aff022; Institut de Systématique, Évolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle,Sorbonne Université, Ecole Pratique des Hautes Etudes, Paris, France
aff023; Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CNRS, Muséum national d'Histoire naturelle,Sorbonne Université, Université de Caen Normandie, Université des Antilles, IRD, Paris, France
aff024; Centre d'Écologie et des Sciences de la Conservation (CESCO), CNRS, Muséum national d'Histoire naturelle,Sorbonne Université, Paris, France
aff025; Centre for Environment, Fisheries & Aquaculture Science, Lowestoft Laboratory, Lowestoft, Suffolk, United Kingdom
aff026; CIIMAR–Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Matosinhos, Portugal
aff027; University of Bergen, Department of Biological Sciences and KG Jebsen Centre for Deep-Sea Research, Bergen, Norway
aff028; NOAA Office of Ocean Exploration and Research, Charleston, South Carolina, United States of America
aff029
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0218904
Souhrn
Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem.
Klíčová slova:
Taxonomy – Marine biology – Biodiversity – Marine ecology – Marine ecosystems – Sponges – Databases – Catalogs
Zdroje
1. Ruppé CV, Barstad JF, editors. International handbook of underwater archaeology. Berlin: Springer Science & Business Media; 2013.
2. Boutan L. La photographie sous-marine. Arch Zool Exp. 1893;3: 281–324.
3. Cousteau JY. The living sea. London: H. Hamilton; 1963.
4. Beebe W. Half mile down. Duell, Sloan and Pearce; 1951.
5. Ewing M, Vine A, Worzel JL. Photography of the ocean bottom. JOSA. 1946 Jun 1;36(6):307–21.
6. Ewing M, Worzel JL, Vine AC. Early development of ocean-bottom photography at Woods Hole Oceanographic Institution and Lamont Geological Observatory. The John Hopkins Oceanographic Studies. 1967.
7. Schenck HJ, Kendall H. Underwater photography. Maryland: Cornell Maritime Press; 1954.
8. Thorndike EM. Deep-sea cameras of the Lamont Observatory. Deep Sea Research (1953). 1958 Jan 1;5(2–4):234–7.
9. Fell HB. Biological applications of sea-floor photography. In: Hersey JB, editor. Deep-sea photography. Baltimore: John Hopkins Press. 1967. pp 207–221.
10. Vevers HG. Photography of the sea floor. J Mar Biol Assoc UK 1951;30: 101–111.
11. Clark HES. Fauna of the Ross Sea Part 3: Asteroidea. Mem N Z Oceanogr Inst 1963;21: 1–84.
12. Marshall NB, Bourne DW. A photographic survey of benthic fishes in the Red Sea and Gulf of Eden, with observations on their population density, diversity and habitats. Bull Mus Comp Zool 1964;132: 225–244.
13. Hersey JB. Deep-sea photography. Baltimore: John Hopkins Press; 1967.
14. Heezen BC, Hollister CD. The face of the deep. London: Oxford University Press; 1971.
15. Grassle JP, Sanders RR, Hessler GT, Rowe GT, McLellan T. Pattern and zonation: a study of the bathyal megafauna using the research submersible Alvin. Deep Sea Res I 1975;22: 457–481.
16. Rice AL, Aldred G, Darlington E, Wild RA. The quantitative estimation of the deep-sea megabenthos: a new approach to an old problem. Oceanol Acta 1982;5: 63–72.
17. Rowe GT, Sibuet M, Vangriesheim A. Domains of occupation of abyssal scavengers inferred from baited cameras and traps on the Demerara Abyssal Plain. Deep Sea Res Part I 1986;33: 501–522.
18. Smith KL, Kaufmann RS, Wakefield WW. Mobile megafaunal activity monitored with a time-lapse camera in the abyssal North Pacific. Deep Sea Res I 1993;40: 2307–2324.
19. Thurston MH, Bett BJ, Rice AL, Jackson PAB. Variations in the invertebrate abyssal megafauna in the North Atlantic Ocean. Deep Sea Res I 1994;41: 1321–1348.
20. Howell KL, Davies J, Hughes DJ, Narayanaswamy BE. Strategic Environmental Assessment / Special Area for Conservation Photographic Analysis Report. London: Department of Trade and Industry; 2007.
21. Durden JM, Schoening T, Althaus F, Friedman A, Garcia R, Glover AG, et al. Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding. Oceanogr Mar Biol Annu Rev 2016;54: 1–72.
22. Taylor J, Krumpen T, Soltwedel T, Gutt J, Bergmann M. Dynamic benthic megafaunal communities: Assessing temporal variations in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015. Deep-Sea Res I 2017;122: 81–94.
23. Taylor J, Krumpen T, Soltwedel T, Gutt J, Bergmann M. Regional- and local- scale variations in benthic megafaunal composition at the Arctic deep-sea observatory HAUSGARTEN. Deep Sea Res I 2016;108: 58–72.
24. Howell KL, Davies JS, Narayanaswamy BE. Identifying deep-sea megafaunal epibenthic assemblages for use in habitat mapping and marine protected area network design. J Mar Biol Assoc UK 2010a;90: 33–68.
25. Huvenne VAI, Bett BJ, Masson DG, Le Bas TP, Wheeler AJ. Effectiveness of a deep-sea cold-water coral Marine Protected Area, following eight years of fisheries closure. Biol Conserv 2016;200: 60–69.
26. Escartin J, Barreyre T, Cannat M, Garcia R, Gracias N, Deschamps A, et al. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls. Earth Planet Sci Lett 2015;431: 173–185.
27. Hirai J, Jones DOB. The temporal and spatial distribution of krill (Meganyctiphanes norvegica) at the deep seabed of the Faroe–Shetland Channel, UK: A potential mechanism for rapid carbon flux to deep sea communities. Mar Biol Res 2011;8: 48–60.
28. Olu K, Lance S, Sibuet M, Henry P, Fiala-Médioni A, Dinet A. Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism. Deep Sea Res I 1997;44: 811–819.
29. Simon-Lledó E, Bett BJ, Huvenne VAI, Schoening T, Benoist NMA, Jeffreys RM, et al. Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. Prog Oceanogr 2019a;170: 119–133.
30. Laurenson C, Hudson IR, Jones DOB, Preide IM. Deep water observations of Lophius piscatorius in the north-eastern Atlantic Ocean by means of a Remotely Operated Vehicle. Fish Biol 2004;65: 947–960.
31. Jones DOB, Bett BJ, Tyler PA. Megabenthic ecology of the Faroe-Shetland Channel: a photographic study. Deep Sea Res I. 2007;54: 1111–1128.
32. Durden JM, Bett BJ, Ruhl HA. The hemisessile lifestyle and feeding strategies of Iosactis vagabunda (Actiniaria, Iosactiidae), a dominant megafaunal species of the Porcupine Abyssal Plain. Deep Sea Res I. 2015a;102: 72–77.
33. Bullimore RD, Foster NL, Howell KL. Coral-characterized benthic assemblages of the deep Northeast Atlantic: defining “Coral Gardens” to support future habitat mapping efforts. ICES J Mar Sci. 2013;70: 511–522.
34. Morato TM, Pham CK, Pinto C, Golding N, Ardron JA, Durán Muñoz P, et al. A multi criteria assessment method for identifying Vulnerable Marine Ecosystems in the North-East Atlantic. Front Mar Sci. 2018;5: 460.
35. Pham CK, Diogo H, Menezes G, Porteiro F, Braga-Henriques A, Vandeperre F, et al. Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems. Sci Rep. 2014a;4:4837.
36. Buhl-Mortensen P. Coral reefs in the Southern Barents Sea: habitat description and the effects of bottom fishing. Mar Biol Res. 2017;13: 1027–1040.
37. Pham CK, Ramirez-Llodra E, Alt CHS, Amaro T, Bergmann M, Canals M, et al. Marine litter distribution and abundance in European Seas, from the shelf to deep basins. PLOS ONE. 2014b;9: e95839.
38. Buhl-Mortensen P, Buhl-Mortensen L. Impacts of Bottom Trawling and Litter on the Seabed in Norwegian Waters. Front Mar Sci. 2018;5:42 doi: 10.3389/fmars.2018.00042
39. Billett DSM, Bett BJ, Reid WDK, Boorman B, Priede IG. Long-term change in the abyssal NE Atlantic: the ‘Amperima Event’ revisited. Deep Sea Res II 2010;57: 1406–1417.
40. Morris KJ, Bett BJ, Durden JM, Huvenne VAI, Milligan R, Jones DOB, et al. A new method for ecological surveying of the abyss using autonomous underwater vehicle photography. Limnol Oceanogr Methods. 2014;12: 795–809.
41. Edgar GJ. Australian marine life: the plants and animals of temperate waters. Sydney: Reed New Holland; 2008.
42. Wood C. Sea anemones and corals of Britain and Ireland. Plymouth: Wild Nature Press; 2013.
43. Jacobsen Stout N, Kuhnz L, Lundsten L, Schlining B, Schlining K, von Thun S. The Deep-Sea Guide (DSG). Monterey Bay Aquarium Research Institute (MBARI). 2015. Available from: http://dsg.mbari.org/dsg/home
44. Braga-Henriques A, Pereira JN, Tempera F, Porteiro FM, Pham C, Morato T, et al. Cold-water coral communities on Condor Seamount: initial interpretations. In: Giacomello E, Menezes G (eds) CONDOR observatory for long-term study and monitoring of azorean seamount ecosystems. Final Project Report, Arquivos do DOP, Série Estudos 1/2012, Horta. 2011. pp 105–114.
45. Braga-Henriques A, Carreiro-Silva M, Tempera F, Porteiro FM, Jakobsen K, Jakobsen J, et al. Carrying behavior in the deep-sea crab Paromola cuvieri (Northeast Atlantic). Mar Biodiv. 2012;42: 37–46
46. Narayanaswamy BE, Hughes DJ, Howell KL, Davies J, Jacobs C. First observations of megafaunal communities inhabiting George Bligh Bank, northeast Atlantic. Deep Sea Res II. 2013;92: 79–86.
47. Amon DJ, Ziegler A, Kremenetskaia A, Mah C, Mooi R, O’Hara T, et al. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Echinodermata. Biodivers Data J. 2017a;5: e11794.
48. van den Beld IMJ, Bourillet JF, Arnaud-Haond S, de Chambure L, Davies JS, Guillaumont B, et al. Cold-water coral habitats in submarine canyons of the Bay of Biscay. Front Mar Sci. 2017;4: 10.3389/fmars.2017.00118
49. Alt CHS, Kremenetskaia A, Gebruk AV, Gooday AJ, Jones DOB. Bathyal benthic megafauna from the Mid‐Atlantic Ridge in the region of the Charlie-Gibbs fracture zone based on remotely operated vehicle observations. Deep Sea Res I. 2019;145: 1–12.
50. Hawkes N, Korabik M, Beazley L, Rapp HT, Xavier JR, Kenchington E. Glass sponge grounds on the Scotian Shelf and their associated biodiversity. Mar Ecol Prog Ser. 2019;614: 91–109.
51. Culverhouse PF, Williams R, Reguera B, Herry V, Gonzalez-Gils. Do experts make mistakes? A comparison of human and machine identification of dinoflagellates. Mar Ecol Prog Ser. 2003;247: 17–25.
52. MacLeod N, Benfield M, Culverhouse P. Time to automate identification. Nature. 2010;467: 154–155. doi: 10.1038/467154a 20829777
53. Schoening T, Bergmann M, Ontrup J, Taylor J, Dannheim J, Gutt J, et al. Semi-automated image analysis for the assessment of megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN. PLOS ONE. 2012;7: e38179. doi: 10.1371/journal.pone.0038179 22719868
54. Wynn RB, Huvenne VAI, Le Bas TP, Murton BJ, Connelly DP, Bett BJ, et al. Autonomous Underwater Vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar Geol. 2014;352: 451–468.
55. Jones DOB, Gates AR, Huvenne VAI, Phillips AB, Bett BJ. Autonomous marine environmental monitoring: Application in decommissioned oil fields. Sci Total Environ. 2019;668: 835–853. doi: 10.1016/j.scitotenv.2019.02.310 30870752
56. Piechaud N, Hunt C, Culverhouse PF, Foster NL, Howell KL. Automated identification of benthic epifauna with computer vision. Mar Ecol Prog Ser. 2019;615: 15–30.
57. Edgington DR, Cline DE, Davis D, Kerkez I, Mariette J. Detecting, tracking and classifying animals in underwater video. Proc Oceans IEEE. 2006.
58. Beijbom O, Edmunds PJ, Roelfsema C, Smith J, Kline DI, Neal BP, et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLOS ONE. 2015;10:e0130312. doi: 10.1371/journal.pone.0130312 26154157
59. Schoening T, Durden J, Preuss I, Albu AB, Purser A, De Smet B,et al. Report on the marine imaging workshop 2017. Res Ideas Outcomes. 2017;3:e13820.
60. Favret C, Sieracki JM. Machine vision automated species identification scaled towards production levels. Syst Entomol. 2016;41: 133–143.
61. Langenkämper D, Nattkemper TW. COATL—A learning architecture for online real-time detection and classification assistance for environmental data. IEEE Int Conf Pattern Recognit, IEEE, 2017a. pp 597–602.
62. Howell KL, Davies JS. Deep-sea species image catalogue, On-line version 2. 2016. Available from: https://deepseacruorg/2016/12/16/deep-sea-species-image-catalogue/
63. Jones DOB, Gates AR. Deep-sea life of Scotland and Norway. UK: Ophiura; 2010.
64. Robert K, Jones DOB, Tyler PA, Van Rooji D, Huvenne VAI. Finding the hotspots within a biodiversity hotspot: fine-scale biological predictions within a submarine canyon using high-resolution acoustic mapping techniques. Mar Ecol. 2014;36: 1256–1276.
65. Amon DJ, Ziegler AF, Drazen JC, Grischenko AV, Leitner AB, Lindsay DJ,et al. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca. Biodivers Data J. 2017b;5: e14598–e14598
66. Stefanoudis P, Smith S, Schneider C, Wagner D, Goodbody-Gringley G, Xavier J,et al. Deep Reef Benthos of Bermuda: Field Identification Guide. Figshare Book. 2018. Available from: https://doi.org/10.6084/m9.figshare.7333838.v1
67. Althaus F, Hill N, Ferrari R, Edwards L, Przeslawski R, Schönberg CH, et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PLOS ONE. 2015;10:e0141039 doi: 10.1371/journal.pone.0141039 26509918
68. Glover AG, Higgs ND, Horton T, Porrer A. Deep Sea ID v.1.2 A Field Guide to the Marine Life of the Deep Sea 2015. Available from http://www.marinespecies.org/deepsea
69. NOAA Office of Ocean Exploration and Research Benthic Deepwater Animal Identification Guide. 2018. Available from: https://oceanexplorer.noaa.gov/okeanos/animal_guide/animal_guide.html
70. Ebert DA, Stehmann MFW. Sharks, batoids, and chimaeras of the North Atlantic. FAO Species Catalogue for Fishery Purposes. No. 7. FAO, Rome; 2013.
71. Howell KL, Davies JS, van den Beld I. Deep-sea species image catalogue. University of Plymouth, Ifremer, NOAA. 2017; Available from: http://www.deepseacatalogue.fr/
72. Jones DOB, Gates AR, Curry RA, Thomson M, Pile A, Benfield M editors. SERPENT project. Media database archive. 2009; Available online: http://archive.serpentproject.com/
73. Rogacheva A, Gebruk A, Alt CH. Holothuroidea of the Charlie Gibbs Fracture Zone area, northern Mid-Atlantic Ridge. Mar Biol Res 2013;9: 587–623.
74. Oliveira F, Aguilar R, Monteiro P, Bentes L, Afonso CML, García S,et al. A photographic guide of the species of the Gorringe. Centro de Ciências do Mar/Oceana, Faro. 2017.
75. Kenchington E, Best M, Cogswell A, MacIsaac K, Murillo-Perez FJ, MacDonald B,et al. Coral Identification Guide NAFO Area. NAFO Scientific Council Studies, Nova Scotia. 2009.
76. Best M, Kenchington E, MacIsaac K, Wareham VE, Fuller SD, Thompson AB Sponge Identification Guide NAFO Area. NAFO Scientific Council Studies, Nova Scotia. 2010; pp 43–50.
77. Kenchington E, Beazley L, Murillo FJ, Tompkins MacDonald G, Baker E. Coral, Sponge, and Other Vulnerable Marine Ecosystem Indicator Identification Guide, NAFO Area. NAFO Scientific Council Studies, Nova Scotia. 2015.
78. Packer D, Drohan A. Identification sheets for the common deep-sea corals off the Northeast and Mid-Atlantic US (v1.0). NOAA. 2013. Available from: https://www.nefsc.noaa.gov/fsb /training/NortheasternU.SDeepsea_Coral_Guide.pdf
79. Serena F. Field identification guide to the sharks and rays of the Mediterranean and Black Sea. FAO Species Catalogue for Fishery Purposes. FAO, Rome; 2005.
80. Fourt M, Goujard A, Pérez T, Chevaldonné P. Guide de la faune profonde de la mer Méditerranée: Explorations des roches et canyons sous-marins des côtes françaises. Muséum national d'Histoire naturelle, Paris; 2017.
81. Xavier JR, Bo M. Deep-sea sponges of the Mediterranean Sea; 2017. Available from http://www.fao.org/3/a-i6945e.pdf
82. Bo M. Deep-sea corals of the Mediterranean Sea; 2017. Available from http://www.fao.org/3/a-i7256e.pdf
83. Alt CHS. On the benthic invertebrate megafauna at the Mid-Atlantic Ridge, in the vicinity of the Charlie-Gibbs Fracture Zone. PhD Thesis, University of Southampton. 2012.
84. Wieczorek J, Bloom D, Guralnick R, Blum S, Doring M, Giovanni R, et al. Darwin Core: an evolving community-developed biodiversity data standard. PLOS ONE. 2012;7: e2971569.
85. Encyclopedia of Life. Available from http://www.eol.org
86. GBIF.org. GBIF Home Page. 2018. Available from https://www.gbif.org
87. OBIS. Ocean Biogeographic Information System. Intergovernmental Oceanographic Commission of UNESCO. 2018. Available from www.iobis.org.
88. WoRMS Editorial Board. World Register of Marine Species. 2018. Available from http://www.marinespecies.org.
89. Vandepitte L, Vanhoorne B, Decock W, Vranken S, Lanssens T, Dekeyzer S, et al. A decade of the World Register of Marine Species—General insights and experiences from the Data Management Team: Where are we, what have we learned and how can we continue? PLOS ONE 2018;13: e0194599 doi: 10.1371/journal.pone.0194599 29624577
90. Horton T, Gofas S, Kroh A, Poore GCB, Read G, Rosenberg G, et al. Improving nomenclatural consistency: a decade of experience in the World Register of Marine Species. Eur J Taxon. 2017;389: 1–24.
91. Claus S, De Hauwere N, Vanhoorne B, Souza Dias F, Oset García P, Schepers L, et al. MarineRegions.org. 2018. Available from http://www.marineregions.org
92. Howell KL, Billett DSM, Tyler PA. Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, NE Atlantic. Deep Sea Res I. 2002;49: 1901–1920.
93. Greene HG, Yoklavich MM, Starr RM, O’Connell VM, Wakefield WW, Sullivan DE, et al. A classification scheme for deep seafloor habitats. Oceanol Acta 1999;22: 663–678.
94. Davies CE, Moss D. EUNIS Habitat Classification. Final Report to the European Topic Centre on Nature Conservation, European Environment Agency, Copenhagen; 1998.
95. Davies CE, Moss D, Hill MO. EUNIS Habitat Classification Revised 2004. Report to the European Topic Centre on Nature Protection and Biodiversity, European Environment Agency, Copenhagen; 2004.
96. Folk RL. The distinction between grain size and mineral composition in sedimentary rock nomenclature. J Geol. 1954;62: 344–359.
97. Wentworth CK. A scale of grade and class terms for clastic sediments. J Geol. 1922;30: 377–392.
98. Danovaro R, Snelgrove PV, Tyler P. Challenging the paradigms of deep-sea ecology. Trends Ecol Evol. 2014;29: 465–475. doi: 10.1016/j.tree.2014.06.002 25001598
99. Howell KL, Mowles SL, Foggo A. Mounting evidence: near-slope seamounts are faunally indistinct from an adjacent bank. Mar Ecol—Evol Persp. 2010b;31: 52–62.
100. Victorero L, Robert K, Robinson LF, Taylor ML, Huvenne VAI. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci Rep. 2018;8: 4152. doi: 10.1038/s41598-018-22296-8 29515196
101. Durden JM, Bett BJ, Jones DOB, Huvenne VAI, Ruhl HA. Abyssal hills a hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Prog Oceanogr. 2015b;137: 209–218.
102. Buhl-Mortensen L, Buhl-Mortensen P, Dolan MFJ, Dannheim J, Bellec V, Holte B. Habitat complexity and bottom fauna composition at different scales on the continental shelf and slope of northern Norway. Hydrobiologia. 2012;685:191–219.
103. Fonseca P, Abrantes F, Aguilar R, Campos A, Cunha M, Ferreira D, et al. A deep-water crinoid Leptometra celtica bed off the Portuguese south coast. Mar Biodivers. 2014;44: 223–228.
104. Huvenne VAI, Tyler PA, Masson DG, Fisher EH, Hauton CH, Hühnerbach V,et al. A picture on the wall: Innovative mapping reveals cold-water coral refuge on submarine canyon. PLOS ONE. 2011;6: e28755. doi: 10.1371/journal.pone.0028755 22194903
105. Johnson MP, White M, Wilson A, Würzberg L, Schwabe E, Folch H, et al. A vertical wall dominated by Acesta excavata and Neopycnodonte zibrowii, part of an undersampled group of deep-sea habitats. PLOS ONE. 2013;8: e79917 doi: 10.1371/journal.pone.0079917 24260319
106. Davies JS, Howell KL, Stewart HA, Guinan J, Golding N. Defining biological assemblages (biotopes) of conservation interest in the submarine canyons of the South West Approaches (offshore United Kingdom) for use in marine habitat mapping. Deep Sea Res II. 2014;104: 208–229.
107. Bell JB, Alt CHS, Jones DOB. Benthic megafauna on steep slopes at the Northern Mid-Atlantic Ridge. Mar Ecol. 2016;37: 1290–1302.
108. Marsh L, Copley JT, Huvenne VAI, Tyler PA and the Isis ROV Facility. Getting the bigger picture: Using precision Remotely Operated Vehicle (ROV) videography to acquire high-definition mosaic images of newly discovered hydrothermal vents in the Southern Ocean. Deep Sea Res II. 2013;92: 124–135.
109. McClain CR, Hardy SM. The dynamics of biogeographic ranges in the deep sea. Proc R Soc Lond [Biol]. 2010;277: 3533–3546.
110. McClain CR, Schlacher TA. On some hypotheses of diversity of animal life at great depths on the sea floor. Mar Ecol. 2015;36: 849–872.
111. Howell KL, Piechaud N, Downie AL, Kenny A. The distribution of deep-sea sponge aggregations in the North Atlantic and implications for their effective spatial management. Deep Sea Res I. 2016;115: 309–320.
112. Vanreusel A, Hilario A, Ribeiro PA, Menot L, Arbizu PM. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci Rep. 2016;6: 26808 doi: 10.1038/srep26808 27245847
113. Simon-Lledó E, Bett BJ, Huvenne VAI, Schoening T, Benoist NMA, Jones DOB. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol Oceanogr 2019b.
114. CCAMLR. VME Taxa Classification Guide. Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Tasmania, 2009; 4pp
115. Vieira RP, Cunha MR. In situ observation of chimaerid species in the Gorringe Bank: new distribution records for the north‐east Atlantic Ocean. J Fish Biol. 2014;85: 927–932. doi: 10.1111/jfb.12444 24976453
116. Walter DE, Winterton S. Keys and the crisis in taxonomy: extinction or reinvention? Annu Rev Entomol. 2007;52: 193–208. doi: 10.1146/annurev.ento.51.110104.151054 16913830
117. Grandcolas P. Loosing the connection between the observation and the specimen: a by-product of the digital era or a trend inherited from general biology? Bionomina. 2017;12: 57–62.
118. Thomson SA, Pyle RL, Ahyong ST, Alonso-Zarazaga M, Ammirati J, Araya JF, et al. Taxonomy based on science is necessary for global conservation. PLOS Biol. 2018;16: e2005075 doi: 10.1371/journal.pbio.2005075 29538381
119. Hagedorn G, Rambold G, Martellos S. Types of identification keys. In Nimis PL, Vignes Lebbe R, editors. Tools for identifying biodiversity: progress and problems. Proc Int Cong Paris, Edizioni Università di Trieste 2012; pp 59–64.
120. Williams S, Friedman A. SQUIDLE+ 2018. Available from: http://squidle.acfr.usyd.edu.au.
121. Ontrup J, Ehnert N, Bergmann M, Nattkemper TW. BIIGLE—Web 2.0 enabled labelling and exploring of images from the Arctic deep-sea observatory HAUSGARTEN. In OCEANS 2009 N EUROPE. IEEE, Bremen, 2009; pp 1–7.
122. Langenkämper D, Zurowietz M, Schoening T, Nattkemper TW. BIIGLE 2.0—Browsing and Annotating Large Marine Image Collections. Front Mar Sci 2017b; 4: 1–10.
123. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In Krizhevsky A, Sutskever I, Hinton GE, editors. Advances in neural information processing systems. 2012; pp 1097–1105.
124. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436. doi: 10.1038/nature14539 26017442
125. Woodall LC, Andradi-Brown DA, Brierley AS, Clark MR, Connelly D, Hall RA, et al. Multidisciplinary approach for generating globally consistent data on mesophotic, deep-pelagic, and bathyal biological communities. Oceanogr. 2018;31: 3.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts