#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Isolation and characterization of the EgWRI1 promoter from oil palm (Elaeis guineensis Jacq.) and its response to environmental stress and ethylene


Autoři: Qing Zhang aff001;  Ruhao Sun aff001;  Yusheng Zheng aff001;  Yijun Yuan aff002;  Dongdong Li aff001
Působiště autorů: Department of Biotechnology, College of Tropical Crops, Hainan University, Hainan, China aff001;  Department of Bioengineering, College of Life Sciences and Pharmacy, Hainan University, Haikou, Hainan, China aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0225115

Souhrn

WRI1 is a plant-specific transcription factor that enhances the accumulation of oils through the upregulation of the expression of genes involved in glycolysis and fatty acid biosynthesis. In this study, the EgWRI1 promoter from oil palm was isolated and characterized in transgenic Arabidopsis. The sequence analysis results revealed that various putative plant regulatory elements are present in the EgWRI1 promoter region. The EgWRI1 promoter and beta-glucuronidase (GUS) reporter gene were transcriptionally fused and transformed into Arabidopsis thaliana. Histochemical analysis revealed that GUS staining was very strong in whole seedlings, especially the stems, leaves, and siliques. Moreover, GUS staining was strong in the silique coats but weak in the seeds. Furthermore, to detect whether EgWRI1 was induced by environmental stress, we detected the expression efficiency of the EgWRI1 promoter in transgenic Arabidopsis treated with low temperature, darkness, and exogenous ethylene. The results showed that the activity of the EgWRI1 promoter was induced by darkness but suppressed significantly when exposed to exogenous ethylene. When treated with low temperature, the activity of the EgWRI1 promoter was first reduced after 24 hours but recovered after 48 hours. Taken together, these results reveal the features of the EgWRI1 promoter from oil palm, which will be helpful for improving oil accumulation in oil palm via reasonable cultivation methods.

Klíčová slova:

Transcription factors – Genetically modified plants – Leaves – Oil palm – Seedlings – Arabidopsis thaliana – Vegetable oils – Ethylene


Zdroje

1. Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. Annu Rev Plant Biol. 2016;70: 156–7. doi: 10.1146/annurev-arplant-043015-111641 26845499

2. Baud S, Wuillème S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J. 2009;60: 933–947. doi: 10.1111/j.1365-313X.2009.04011.x 19719479

3. Bourgis F, Kilaru A, Cao X, Ngando-ebongue G-F, Drira N, Ohlrogge JB, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A. 2011;108: 12527–12532. doi: 10.1073/pnas.1106502108 21709233

4. Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004;40: 575–585. doi: 10.1111/j.1365-313X.2004.02235.x 15500472

5. Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, et al. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J. 2009;60: 476–487. doi: 10.1111/j.1365-313X.2009.03967.x 19594710

6. Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004;40: 575–585. doi: 10.1111/j.1365-313X.2004.02235.x 15500472

7. Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, et al. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J. 2009;60: 476–487. doi: 10.1111/j.1365-313X.2009.03967.x 19594710

8. Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 2007;50: 825–838. doi: 10.1111/j.1365-313X.2007.03092.x 17419836

9. Focks N, Benning C. wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol. 1998;118: 91–101. doi: 10.1104/pp.118.1.91 9733529

10. Reynolds KB, Taylor MC, Zhou X-R, Vanhercke T, Wood CC, Blanchard CL, et al. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids. Front Plant Sci. 2015;6: 1–14. doi: 10.3389/fpls.2015.00001

11. Sanjaya Durrett TP, Weise SE, Benning C. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J. 2011;9: 874–883. doi: 10.1111/j.1467-7652.2011.00599.x 22003502

12. van Erp H, Kelly AA, Menard G, Eastmond PJ. Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol. 2014;165: 30–6. doi: 10.1104/pp.114.236430 24696520

13. Sambanthamurthi R, Sundram K, Tan YewAi. Chemistry and biochemistry of palm oil. [Internet]. Progress in Lipid Research. 2000. doi: 10.1016/S0163-7827(00)00015-1

14. Sundram K, Sambanthamurthi R, Tan YA. Palm fruit chemistry and nutrition. Asia Pac J Clin Nutr. 2003;12: 355–362. 14506001

15. Tranbarger TJ, Dussert S, Joet T, Argout X, Summo M, Champion A, et al. Regulatory Mechanisms Underlying Oil Palm Fruit Mesocarp Maturation, Ripening, and Functional Specialization in Lipid and Carotenoid Metabolism. Plant Physiol. 2011;156: 564–584. doi: 10.1104/pp.111.175141 21487046

16. Ma W, Kong Q, Arondel V, Kilaru A, Bates PD, Thrower NA, et al. WRINKLED1, A Ubiquitous Regulator in Oil Accumulating Tissues from Arabidopsis Embryos to Oil Palm Mesocarp. PLoS One. 2013;8: 1–13. doi: 10.1371/journal.pone.0068887 23922666

17. Yeap WC, Lee FC, Shabari Shan DK, Musa H, Appleton DR, Kulaveerasingam H. WRI1-1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm. Plant J. 2017;91: 97–113. doi: 10.1111/tpj.13549 28370622

18. Jin J, Sun Y, Qu J, Syah R, Lim CH, Alfiko Y, et al. Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm. Sci Rep. 2017;7: 1–12. doi: 10.1038/s41598-016-0028-x

19. Dussert S, Guerin C, Andersson M, Joet T, Tranbarger TJ, Pizot M, et al. Comparative Transcriptome Analysis of Three Oil Palm Fruit and Seed Tissues That Differ in Oil Content and Fatty Acid Composition. Plant Physiol. 2013;162: 1337–1358. doi: 10.1104/pp.113.220525 23735505

20. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30: 325–327. doi: 10.1093/nar/30.1.325 11752327

21. Koncz C, Schell J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet MGG. 1986;204: 383–396. doi: 10.1007/BF00331014

22. Clough SJ, Bent AF. Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. Plant J. 1998;16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x 10069079

23. Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6: 3901–7. doi: 10.1073/pnas.1411926112 3327686

24. Bradford MM. A rapid and sensitive method for the quantiWcation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72: 248–254. doi: 10.1006/abio.1976.9999 942051

25. Kong Q, Ma W, Yang H, Ma G, Mantyla JJ, Benning C. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots. J Exp Bot. 2017;68: 4627–4634. doi: 10.1093/jxb/erx275 28981783

26. Li Q, Shao J, Tang S, Shen Q, Wang T, Chen W, et al. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus. Front Plant Sci. 2015;6: 1015. doi: 10.3389/fpls.2015.01015 26635841

27. Ohlrogge J, Browse J. Lipid Biosynthesis. PLANT CELL ONLINE. 1995;7: 957–970. doi: 10.1105/tpc.7.7.957 7640528

28. Gibson S, Arondel V, Iba K, Somerville C. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol. 1994;106: 1615–1621. doi: 10.1104/pp.106.4.1615 7846164

29. Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. Trends Plant Sci. Elsevier Ltd; 2018;23: 311–323. doi: 10.1016/j.tplants.2018.01.003 29428350

30. Yang C, Lu X, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and arabidopsis: Conserved and diverged aspects. Mol Plant. Elsevier Ltd; 2015;8: 495–505. doi: 10.1016/j.molp.2015.01.003 25732590

31. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15: 573–581. doi: 10.1016/j.tplants.2010.06.005 20674465


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#