Isolation and characterization of the EgWRI1 promoter from oil palm (Elaeis guineensis Jacq.) and its response to environmental stress and ethylene
Autoři:
Qing Zhang aff001; Ruhao Sun aff001; Yusheng Zheng aff001; Yijun Yuan aff002; Dongdong Li aff001
Působiště autorů:
Department of Biotechnology, College of Tropical Crops, Hainan University, Hainan, China
aff001; Department of Bioengineering, College of Life Sciences and Pharmacy, Hainan University, Haikou, Hainan, China
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225115
Souhrn
WRI1 is a plant-specific transcription factor that enhances the accumulation of oils through the upregulation of the expression of genes involved in glycolysis and fatty acid biosynthesis. In this study, the EgWRI1 promoter from oil palm was isolated and characterized in transgenic Arabidopsis. The sequence analysis results revealed that various putative plant regulatory elements are present in the EgWRI1 promoter region. The EgWRI1 promoter and beta-glucuronidase (GUS) reporter gene were transcriptionally fused and transformed into Arabidopsis thaliana. Histochemical analysis revealed that GUS staining was very strong in whole seedlings, especially the stems, leaves, and siliques. Moreover, GUS staining was strong in the silique coats but weak in the seeds. Furthermore, to detect whether EgWRI1 was induced by environmental stress, we detected the expression efficiency of the EgWRI1 promoter in transgenic Arabidopsis treated with low temperature, darkness, and exogenous ethylene. The results showed that the activity of the EgWRI1 promoter was induced by darkness but suppressed significantly when exposed to exogenous ethylene. When treated with low temperature, the activity of the EgWRI1 promoter was first reduced after 24 hours but recovered after 48 hours. Taken together, these results reveal the features of the EgWRI1 promoter from oil palm, which will be helpful for improving oil accumulation in oil palm via reasonable cultivation methods.
Klíčová slova:
Transcription factors – Genetically modified plants – Leaves – Oil palm – Seedlings – Arabidopsis thaliana – Vegetable oils – Ethylene
Zdroje
1. Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. Annu Rev Plant Biol. 2016;70: 156–7. doi: 10.1146/annurev-arplant-043015-111641 26845499
2. Baud S, Wuillème S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J. 2009;60: 933–947. doi: 10.1111/j.1365-313X.2009.04011.x 19719479
3. Bourgis F, Kilaru A, Cao X, Ngando-ebongue G-F, Drira N, Ohlrogge JB, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A. 2011;108: 12527–12532. doi: 10.1073/pnas.1106502108 21709233
4. Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004;40: 575–585. doi: 10.1111/j.1365-313X.2004.02235.x 15500472
5. Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, et al. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J. 2009;60: 476–487. doi: 10.1111/j.1365-313X.2009.03967.x 19594710
6. Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004;40: 575–585. doi: 10.1111/j.1365-313X.2004.02235.x 15500472
7. Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, et al. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J. 2009;60: 476–487. doi: 10.1111/j.1365-313X.2009.03967.x 19594710
8. Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 2007;50: 825–838. doi: 10.1111/j.1365-313X.2007.03092.x 17419836
9. Focks N, Benning C. wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol. 1998;118: 91–101. doi: 10.1104/pp.118.1.91 9733529
10. Reynolds KB, Taylor MC, Zhou X-R, Vanhercke T, Wood CC, Blanchard CL, et al. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids. Front Plant Sci. 2015;6: 1–14. doi: 10.3389/fpls.2015.00001
11. Sanjaya Durrett TP, Weise SE, Benning C. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J. 2011;9: 874–883. doi: 10.1111/j.1467-7652.2011.00599.x 22003502
12. van Erp H, Kelly AA, Menard G, Eastmond PJ. Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol. 2014;165: 30–6. doi: 10.1104/pp.114.236430 24696520
13. Sambanthamurthi R, Sundram K, Tan YewAi. Chemistry and biochemistry of palm oil. [Internet]. Progress in Lipid Research. 2000. doi: 10.1016/S0163-7827(00)00015-1
14. Sundram K, Sambanthamurthi R, Tan YA. Palm fruit chemistry and nutrition. Asia Pac J Clin Nutr. 2003;12: 355–362. 14506001
15. Tranbarger TJ, Dussert S, Joet T, Argout X, Summo M, Champion A, et al. Regulatory Mechanisms Underlying Oil Palm Fruit Mesocarp Maturation, Ripening, and Functional Specialization in Lipid and Carotenoid Metabolism. Plant Physiol. 2011;156: 564–584. doi: 10.1104/pp.111.175141 21487046
16. Ma W, Kong Q, Arondel V, Kilaru A, Bates PD, Thrower NA, et al. WRINKLED1, A Ubiquitous Regulator in Oil Accumulating Tissues from Arabidopsis Embryos to Oil Palm Mesocarp. PLoS One. 2013;8: 1–13. doi: 10.1371/journal.pone.0068887 23922666
17. Yeap WC, Lee FC, Shabari Shan DK, Musa H, Appleton DR, Kulaveerasingam H. WRI1-1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm. Plant J. 2017;91: 97–113. doi: 10.1111/tpj.13549 28370622
18. Jin J, Sun Y, Qu J, Syah R, Lim CH, Alfiko Y, et al. Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm. Sci Rep. 2017;7: 1–12. doi: 10.1038/s41598-016-0028-x
19. Dussert S, Guerin C, Andersson M, Joet T, Tranbarger TJ, Pizot M, et al. Comparative Transcriptome Analysis of Three Oil Palm Fruit and Seed Tissues That Differ in Oil Content and Fatty Acid Composition. Plant Physiol. 2013;162: 1337–1358. doi: 10.1104/pp.113.220525 23735505
20. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30: 325–327. doi: 10.1093/nar/30.1.325 11752327
21. Koncz C, Schell J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet MGG. 1986;204: 383–396. doi: 10.1007/BF00331014
22. Clough SJ, Bent AF. Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. Plant J. 1998;16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x 10069079
23. Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6: 3901–7. doi: 10.1073/pnas.1411926112 3327686
24. Bradford MM. A rapid and sensitive method for the quantiWcation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72: 248–254. doi: 10.1006/abio.1976.9999 942051
25. Kong Q, Ma W, Yang H, Ma G, Mantyla JJ, Benning C. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots. J Exp Bot. 2017;68: 4627–4634. doi: 10.1093/jxb/erx275 28981783
26. Li Q, Shao J, Tang S, Shen Q, Wang T, Chen W, et al. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus. Front Plant Sci. 2015;6: 1015. doi: 10.3389/fpls.2015.01015 26635841
27. Ohlrogge J, Browse J. Lipid Biosynthesis. PLANT CELL ONLINE. 1995;7: 957–970. doi: 10.1105/tpc.7.7.957 7640528
28. Gibson S, Arondel V, Iba K, Somerville C. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol. 1994;106: 1615–1621. doi: 10.1104/pp.106.4.1615 7846164
29. Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. Trends Plant Sci. Elsevier Ltd; 2018;23: 311–323. doi: 10.1016/j.tplants.2018.01.003 29428350
30. Yang C, Lu X, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and arabidopsis: Conserved and diverged aspects. Mol Plant. Elsevier Ltd; 2015;8: 495–505. doi: 10.1016/j.molp.2015.01.003 25732590
31. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15: 573–581. doi: 10.1016/j.tplants.2010.06.005 20674465
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts