Intrinsic group behaviour II: On the dependence of triad spatial dynamics on social and personal features; and on the effect of social interaction on small group dynamics
Autoři:
Francesco Zanlungo aff001; Zeynep Yucel aff001; Takayuki Kanda aff001
Působiště autorů:
Intelligent Robotics and Communication Laboratory, ATR, Kyoto, Japan
aff001; Department of Computer Science, Okayama University, Okayama, Japan
aff002; Department of Social Informatics, Kyoto University, Kyoto, Japan
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225704
Souhrn
In a follow-up to our work on the dependence of walking dyad dynamics on intrinsic properties of the group, we now analyse how these properties affect groups of three people (triads), taking also in consideration the effect of social interaction on the dynamical properties of the group. We show that there is a strong parallel between triads and dyads. Work-oriented groups are faster and walk at a larger distance between them than leisure-oriented ones, while the latter move in a less ordered way. Such differences are present also when colleagues are contrasted with friends and families; nevertheless the similarity between friend and colleague behaviour is greater than the one between family and colleague behaviour. Male triads walk faster than triads including females, males keep a larger distance than females, and same gender groups are more ordered than mixed ones. Groups including tall people walk faster, while those with elderly or children walk at a slower pace. Groups including children move in a less ordered fashion. Results concerning relation and gender are particularly strong, and we investigated whether they hold also when other properties are kept fixed. While this is clearly true for relation, patterns relating gender often resulted to be diminished. For instance, the velocity difference due to gender is reduced if we compare only triads in the colleague relation. The effects on group dynamics due to intrinsic properties are present regardless of social interaction, but socially interacting groups are found to walk in a more ordered way. This has an opposite effect on the space occupied by non-interacting dyads and triads, since loss of structure makes dyads larger, but causes triads to lose their characteristic V formation and walk in a line (i.e., occupying more space in the direction of movement but less space in the orthogonal one).
Klíčová slova:
Human families – Behavior – Probability distribution – Statistical data – Elderly – Social psychology – Mathematical models – Collective human behavior
Zdroje
1. Challenger W, Clegg W, Robinson A. Understanding crowd behaviours: Guidance and lessons identified. UK Cabinet Office. 2009; p. 11–13.
2. Reicher SD. The psychology of crowd dynamics. vol. 44. Wiley Online Library; 2001.
3. Zanlungo F, Ikeda T, Kanda T. Potential for the dynamics of pedestrians in a socially interacting group. Physical Review E. 2014;89(1):012811. doi: 10.1103/PhysRevE.89.012811
4. Zanlungo F, Brščić D, Kanda T. Spatial-size scaling of pedestrian groups under growing density conditions. Physical Review E. 2015;91(6):062810. doi: 10.1103/PhysRevE.91.062810
5. Brščić D, Zanlungo F, Kanda T. Density and velocity patterns during one year of pedestrian tracking. Transportation Research Procedia. 2014;2:77–86. doi: 10.1016/j.trpro.2014.09.011
6. Schultz M, Rößger L, Fricke H, Schlag B. Group dynamic behavior and psychometric profiles as substantial driver for pedestrian dynamics. In: Pedestrian and Evacuation Dynamics 2012. vol. 2. Springer; 2014. p. 1097–1111.
7. Moussaïd M, Perozo N, Garnier S, Helbing D, Theraulaz G. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS One. 2010;5(4):e10047. doi: 10.1371/journal.pone.0010047 20383280
8. Mawson AR. Mass panic and social attachment: The dynamics of human behavior. Routledge; 2017.
9. Kumagai K, Ehiro I, Ono K. Numerical simulation model of group walking for tsunami evacuees. In: Proceedings of the Pedestrian and Evacuation Dynamics Conference. University of Science and Technology of China Press; 2016.
10. Zanlungo F, Crociani L, Yücel Z, Kanda T. The effect of social groups on the dynamics of bi-directional pedestrian flow: a numerical study. To be published in: Proceedings of Traffic and Granular Flow 2019. Springer; 2019. arXiv preprint arXiv:1910.04337.
11. Kachroo P, Al-Nasur SJ, Wadoo SA, Shende A. Pedestrian dynamics: Feedback control of crowd evacuation. Springer Science & Business Media; 2008.
12. Seitz MJ, Templeton A, Drury J, Köster G, Philippides A. Parsimony versus reductionism: How can crowd psychology be introduced into computer simulation? Review of General Psychology. 2017;21(1):95–102. doi: 10.1037/gpr0000092
13. Kim S, Guy SJ, Manocha D, Lin MC. Interactive simulation of dynamic crowd behaviors using general adaptation syndrome theory. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. ACM; 2012. p. 55–62.
14. Costa M. Interpersonal distances in group walking. Journal of Nonverbal Behavior. 2010;34(1):15–26. doi: 10.1007/s10919-009-0077-y
15. He L, Pan J, Wang W, Manocha D. Proxemic group behaviors using reciprocal multi-agent navigation. In: Proceedings of the International Conference on Robotics and Automation. IEEE; 2016. p. 292–297.
16. Zanlungo F, Kanda T. Do walking pedestrians stabily interact inside a large group? Analysis of group and sub-group spatial structure. In: Proceedings of the Annual Meeting of the Cognitive Science Society. vol. 35; 2013. p. 3847–3852.
17. Gorrini A, Vizzari G, Bandini S. Granulometric distribution and crowds of groups: focusing on dyads. In: Proceedings of the Traffic and Granular Flow 2015. Springer; 2016. p. 273–280.
18. Bandini S, Crociani L, Gorrini A, Vizzari G. An agent-based model of pedestrian dynamics considering groups: A real world case study. In: Proceedings of the International Conference on Intelligent Transportation Systems. IEEE; 2014. p. 572–577.
19. Köster G, Seitz M, Treml F, Hartmann D, Klein W. On modelling the influence of group formations in a crowd. Contemporary Social Science. 2011;6(3):397–414. doi: 10.1080/21582041.2011.619867
20. Köster G, Treml F, Seitz M, Klein W. Validation of crowd models including social groups. In: Pedestrian and Evacuation Dynamics 2012. vol. 2. Springer; 2014. p. 1051–1063.
21. Wei X, Lv W, Song W, Li X. Survey study and experimental investigation on the local behavior of pedestrian groups. Complexity. 2015;20(6):87–97. doi: 10.1002/cplx.21633
22. Karamouzas I, Overmars M. Simulating the local behaviour of small pedestrian groups. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM; 2010. p. 183–190.
23. Zhang Y, Pettre J, Qin X, Donikian S, Peng Q. A local behavior model for small pedestrian groups. In: Proceedings of the International Conference on Computer-Aided Design and Computer Graphics. IEEE; 2011. p. 275–281.
24. Bode NW, Holl S, Mehner W, Seyfried A. Disentangling the impact of social groups on response times and movement dynamics in evacuations. PloS One. 2015;10(3):e0121227. doi: 10.1371/journal.pone.0121227 25785603
25. Gorrini A, Crociani L, Feliciani C, Zhao P, Nishinari K, Bandini S. Social groups and pedestrian crowds: Experiment on dyads in a counter flow scenario. arXiv preprint arXiv:161008325. 2016;.
26. Zhao P, Sun L, Cui L, Luo W, Ding Y. The walking behaviours of pedestrian social group in the corridor of subway station. In: Proceedings of the 2016 Pedestrian and Evacuation Dynamics Conference; 2016.
27. von Krüchten C, Müller F, Svachiy A, Wohak O, Schadschneider A. Empirical study of the influence of social groups in evacuation scenarios. In: Proceedings of Traffic and Granular Flow. Springer; 2016. p. 65–72.
28. Wang W, Lo S, Liu S, Ma J. A simulation of pedestrian side-by-side walking behaviour and its impact on crowd dynamics. In: Proceedings of the International Conference on Pedestrian and Evacuation Dynamics; 2016.
29. Huang J, Zou X, Qu X, Ma J, Xu R. A structure analysis method for complex social pedestrian groups with symbol expression and relationship matrix. In: Proceedings of the International Conference on Pedestrian and Evacuation Dynamics; 2016.
30. Manfredi M, Vezzani R, Calderara S, Cucchiara R. Detection of static groups and crowds gathered in open spaces by texture classification. Pattern Recognition Letters. 2014;44:39–48. doi: 10.1016/j.patrec.2013.11.001
31. Von Krüchten C, Schadschneider A. Empirical study on social groups in pedestrian evacuation dynamics. Physica A: Statistical Mechanics and its Applications. 2017;475:129–141. doi: 10.1016/j.physa.2017.02.004
32. Faria JJ, Dyer JR, Tosh CR, Krause J. Leadership and social information use in human crowds. Animal Behaviour. 2010;79(4):895–901. doi: 10.1016/j.anbehav.2009.12.039
33. Templeton A, Drury J, Philippides A. From mindless masses to small groups: conceptualizing collective behavior in crowd modeling. Review of General Psychology. 2015;19(3):215–229. doi: 10.1037/gpr0000032 26388685
34. Zanlungo F, Kanda T. A mesoscopic model for the effect of density on pedestrian group dynamics. EPL (Europhysics Letters). 2015;111(3):38007. doi: 10.1209/0295-5075/111/38007
35. Turchetti G, Zanlungo F, Giorgini B. Dynamics and thermodynamics of a gas of automata. EPL (Europhysics Letters). 2007;78(5):58003. doi: 10.1209/0295-5075/78/58003
36. Feliciani C, Nishinari K, Zanlungo F, Kanda T. Thermodynamics of a gas of pedestrians: Theory and experiment. In: Proceedings of the International Conference on Pedestrian and Evacuation Dynamics; 2016.
37. Zanlungo F, Brščić D, Kanda T. Pedestrian group behaviour analysis under different density conditions. Transportation Research Procedia. 2014;2:149–158. doi: 10.1016/j.trpro.2014.09.020
38. Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age and Ageing. 1997;26(1):15–19. doi: 10.1093/ageing/26.1.15 9143432
39. Bode N. The effect of social groups and gender on pedestrian behaviour immediately in front of bottlenecks. In: Proceedings of the International Conference on Pedestrian and Evacuation Dynamics; 2016.
40. Henderson L, Lyons D. Sexual differences in human crowd motion. Nature. 1972;240(5380):353. doi: 10.1038/240353a0 4570498
41. von Sivers I, Künzner F, Köster G. Pedestrian evacuation simulation with separated families. In: Proceedings of the International Conference on Pedestrian and Evacuation Dynamics; 2016.
42. Feng Y, Li D. An empirical study and conceptual model on heterogenity of pedestrian social groups for friend-group and family-group. In: Proceedings of the International Conference on Pedestrian and Evacuation Dynamics; 2016.
43. Müller F, Schadschneider A. Evacuation dynamics of asymmetrically coupled pedestrian pairs. In: Proceeding of Traffic and Granular Flow 2015. Springer; 2016. p. 265–272.
44. Yücel Z, Zanlungo F, Feliciani C, Gregorj A, Kanda T. Identification of social relation within pedestrian dyads. PLOS ONE accepted.
45. Yücel Z, Zanlungo F, Kanda T. Gender profiling of pedestrian dyads. In: Proceedings of Traffic and Granular Flow 2019 (in press). Springer; 2019.
46. Zanlungo F, Yücel Z, Brščić D, Kanda T, Hagita N. Intrinsic group behaviour: Dependence of pedestrian dyad dynamics on principal social and personal features. PLoS One. 2017;12(11):e0187253. doi: 10.1371/journal.pone.0187253 29095913
47. Brščić D, Kanda T, Ikeda T, Miyashita T. Person tracking in large public spaces using 3-D range sensors. IEEE Transactions on Human-Machine Systems. 2013;43(6):522–534. doi: 10.1109/THMS.2013.2283945
48. Bandini S, Gorrini A, Nishinari K. Crossing disciplinary borders through studying walkability. In: Proceedings of International Conference on Cross-Cultural Design. Springer; 2016. p. 491–503.
49. Levine RV, Norenzayan A. The pace of life in 31 countries. Journal of Cross-cultural Psychology. 1999;30(2):178–205. doi: 10.1177/0022022199030002003
50. Zanlungo F, Yücel Z, Kanda T. Social group behaviour of triads. Dependence on purpose and gender. In: Proceedings of the International Conference on Pedestrian and Evacuation Dynamics (in press;.
51. Adrian J, Bode N, Amos M, Baratchi M, Beermann M, Boltes M, et al. A glossary for research on human crowd dynamics. Collective Dynamics. 2019;4:1–13. doi: 10.17815/CD.2019.19
52. Yücel Z, Zanlungo F, Shiomi M. Modeling the impact of interaction on pedestrian group motion. Advanced Robotics. 2018;32(3):137–147. doi: 10.1080/01691864.2017.1421481
53. ATR IRC. Pedestrian tracking with group annotations; 2018. http://www.irc.atr.jp/sets/groups/.
54. Seer S, Brändle N, Ratti C. Kinects and human kinetics: A new approach for studying pedestrian behavior. Transportation Research Part C: Emerging Technologies. 2014;48:212–228. doi: 10.1016/j.trc.2014.08.012
55. Corbetta A, Bruno L, Muntean A, Toschi F. High statistics measurements of pedestrian dynamics. Transportation Research Procedia. 2014;2:96–104. doi: 10.1016/j.trpro.2014.09.013
56. Bugental DB. Acquisition of the algorithms of social life: A domain-based approach. Psychological Bulletin. 2000;126(2):187. doi: 10.1037/0033-2909.126.2.187 10748640
57. Knapp ML, Hall JA, Horgan TG. Nonverbal communication in human interaction. Cengage Learning; 2013.
58. Kleinke CL. Gaze and eye contact: A research review. Psychological bulletin. 1986;100(1):78. doi: 10.1037/0033-2909.100.1.78 3526377
59. Argyle M, Dean J. Eye-contact, distance and affiliation. Sociometry. 1965; p. 289–304. doi: 10.2307/2786027 14341239
60. Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement. 1960; 20 (1): 37–46. doi: 10.1177/001316446002000104
61. Krippendorff K. Reliability in content analysis. Human communication research. 2004; 30.3: 411–433. doi: 10.1111/j.1468-2958.2004.tb00738.x
62. Zanlungo F, Chigodo Y, Ikeda T, Kanda T. Experimental study and modelling of pedestrian space occupation and motion pattern in a real world environment. In: Pedestrian and Evacuation Dynamics 2012. Springer; 2014. p. 289–304.
63. Zhang J, Klingsch W, Schadschneider A, Seyfried A. Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions. Journal of Statistical Mechanics: Theory and Experiment. 2011;2011(06):P06004. doi: 10.1088/1742-5468/2011/06/P06004
64. Corbetta A, Meeusen J, Lee Cm, Toschi F. Continuous measurements of real-life bidirectional pedestrian flows on a wide walkway. arXiv preprint arXiv:160702897. 2016;.
65. Corbetta A, Lee Cm, Muntean A, Toschi F. Frame vs. trajectory analyses of pedestrian dynamics asymmetries in a staircase landing. Collective Dynamics. 2017;1:1–26. doi: 10.17815/CD.2017.10
66. Kanda T, Shiomi M, Miyashita Z, Ishiguro H, Hagita N. An affective guide robot in a shopping mall. In: Proceedings of the international Conference on Human Robot Interaction. ACM; 2009. p. 173–180.
67. Shiomi M, Zanlungo F, Hayashi K, Kanda T. Towards a socially acceptable collision avoidance for a mobile robot navigating among pedestrians using a pedestrian model. International Journal of Social Robotics. 2014;6(3):443–455. doi: 10.1007/s12369-014-0238-y
68. Murakami R, Morales Y, Satake S, Kanda T, Ishiguro H. Destination unknown: walking side-by-side without knowing the goal. In: Proceedings of the International Conference on Human-Robot Interaction. IEEE; 2014. p. 471–478.
69. Repiso E, Zanlungo F, Kanda T, Garrell A, Sanfeliu A. People’s V-Formation and Side-by-Side Model Adapted to Accompany Groups of People by Social Robots. In: Proceedings of the International Conference on Intelligent Robots and Systems (accepted); 2019.
70. Yücel Z, Zanlungo F, Ikeda T, Miyashita T, Hagita N. Deciphering the crowd: Modeling and identification of pedestrian group motion. Sensors. 2013;13(1):875–897. doi: 10.3390/s130100875 23344382
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Somatizace stresu – typické projevy a možnosti řešení
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts