Transcriptional changes during hepatic ischemia-reperfusion in the rat
Autoři:
Valerie Zabala aff001; Joan M. Boylan aff001; Paul Thevenot aff003; Anderson Frank aff003; Dewahar Senthoor aff004; Varun Iyengar aff004; Hannah Kim aff002; Ari Cohen aff003; Philip A. Gruppuso aff001; Jennifer A. Sanders aff001
Působiště autorů:
Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, United States of America
aff001; Division of Biology and Medicine, Brown University, Providence, RI, United States of America
aff002; Institute of Translational Research, Ochsner Health Systems, New Orleans LA, United States of America
aff003; Warren Alpert Medical School, Providence, RI, United States of America
aff004; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States of America
aff005; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States of America
aff006
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0227038
Souhrn
There are few effective targeted strategies to reduce hepatic ischemia-reperfusion (IR) injury, a contributor to poor outcomes in liver transplantation recipients. It has been proposed that IR injury is driven by the generation of reactive oxygen species (ROS). However, recent studies implicate other mediators of the injury response, including mitochondrial metabolic dysfunction. We examined changes in global gene expression after transient hepatic ischemia and at several early reperfusion times to identify potential targets that could be used to protect against IR injury. Male Wistar rats were subjected to 30 minutes of 70% partial warm ischemia followed by 0, 0.5, 2, or 6 hours of reperfusion. RNA was extracted from the reperfused and non-ischemic lobes at each time point for microarray analysis. Identification of differentially expressed genes and pathway analysis were used to characterize IR-induced changes in the hepatic transcriptome. Changes in the reperfused lobes were specific to the various reperfusion times. We made the unexpected observation that many of these changes were also present in tissue from the paired non-ischemic lobes. However, the earliest reperfusion time, 30 minutes, showed a marked increase in the expression of a set of immediate-early genes (c-Fos, c-Jun, Atf3, Egr1) that was exclusive to the reperfused lobe. We interpreted these results as indicating that this early response represented a tissue autonomous response to reperfusion. In contrast, the changes that occurred in both the reperfused and non-ischemic lobes were interpreted as indicating a non-autonomous response resulting from hemodynamic changes and/or circulating factors. These tissue autonomous and non-autonomous responses may serve as targets to ameliorate IR injury.
Klíčová slova:
Gene expression – Gene regulation – Transcription factors – Ischemia – Liver transplantation – Regulator genes – Reperfusion – Transient ischemic attacks
Zdroje
1. Kim WR, Lake JR, Smith JM, Schladt DP, Skeans MA, Harper AM, et al. OPTN/SRTR 2016 Annual Data Report: Liver. Am J Transplant. 2018;18:172–253. doi: 10.1111/ajt.14559 29292603
2. Orman ES, Barritt AS, Wheeler SB, Hayashi PH. Declining liver utilization for transplantation in the United States and the impact of donation after cardiac death. Liver Transpl. 2013;19(1):59–68. doi: 10.1002/lt.23547 22965893
3. Ozhathil DK, Li YF, Smith JK, Tseng JF, Saidi RF, Bozorgzadeh A, et al. Impact of center volume on outcomes of increased-risk liver transplants. Liver Transplanl. 2011;17(10):1191–9. doi: 10.1002/lt
4. Zhai Y, Henrik Petrowsky JCHRWB, Jerzy WK. Ischaemia–reperfusion injury in liver transplantation—from bench to bedside. Nat Rev Gastroenterol Hepatol. 2013;10(2):79–89. doi: 10.1038/nrgastro.2012.225 23229329
5. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–97. doi: 10.1016/j.redox.2015.07.008 26233704
6. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015;6:524–51. doi: 10.1016/j.redox.2015.08.020 26484802
7. Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59(3):583–94. doi: 10.1016/j.jhep.2013.03.033 23567086
8. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;(298):229–317. doi: 10.1016/B978-0-12-394309-5.00006–7
9. Yamanaka K, Houben P, Bruns H, Schultze D, Hatano E, Schemmer P. A Systematic review of pharmacological treatment options used to reduce ischemia reperfusion injury in rat liver transplantation. PLoS One. 2015;10(4):e0122214 doi: 10.1371/journal.pone.0122214 25919110
10. Hu J, Zhu X-H, Zhang X-J, Wang P-X, Zhang R, Zhang P, et al. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury. J Hepatol. 2016;. 64(1):146–59. doi: 10.1016/j.jhep.2015.08.021 26334576
11. Zhu J, Lu T, Yue S, Shen X, Gao F, Busuttil RW, et al. Rapamycin protection of livers from ischemia and reperfusion injury is dependent on both autophagy induction and mammalian target of rapamycin complex 2-Akt activation. Transplantation. 2014;99(1):48–55. doi: 10.1097/tp.0000000000000476 25340604
12. Sun K, Xie X, Liu Y, Han Z, Zhao X, Cai N, et al. Autophagy lessens ischemic liver injury by reducing oxidative damage. Cell Biosci. 2013 Jun 10;3(1):26. doi: 10.1186/2045-3701-3-26 23758862
13. Zhang X-J, Cheng X, Yan Z-Z, Fang J, Wang X, Wang W, et al. An ALOX12–12-HETE–GPR31 signaling axis is a key mediator of hepatic ischemia–reperfusion injury. Nat Med. 2017;24(1):73–83. doi: 10.1038/nm.4451 29227475
14. Motino O, Frances DE, Casanova N, Fuertes-Agudo M, Cucarella C, Flores JM, et al. Protective role of hepatocyte cyclooxygenase-2 expression against liver ischemia-reperfusion injury in mice. Hepatology. 2018. Epub 2018/08/30. doi: 10.1002/hep.30241 30155948
15. Simillis C, Robertson FP, Afxentiou T, Davidson BR, Gurusamy KS. A network meta-analysis comparing perioperative outcomes of interventions aiming to decrease ischemia reperfusion injury during elective liver resection. Surgery. 2016;159(4):1157–69. doi: 10.1016/j.surg.2015.10.011 26606882
16. Clavien P-a, Yadav S, Sindram D, Bentley RC. Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans. Ann Surg. 2000;232(2):155–62. doi: 10.1097/00000658-200008000-00001 10903590
17. Clavien PA, Selzner M, Rudiger HA, Graf R, Kadry Z, Rousson V, Jochum W. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg. 2003;238(6):843–52. doi: 10.1097/01.sla.0000098620.27623.7d 14631221
18. Neill SO, Leuschner S, McNally SJ, Garden OJ, Wigmore SJ, Harrison EM. Meta-analysis of ischaemic preconditioning for liver resections. Br J Surg. 2013;100:1689–700. doi: 10.1002/bjs.9277 24227353
19. Robertson FP, Magill LJ, Wright GP, Fuller B, Davidson BR. A systematic review and meta-analysis of donor ischaemic preconditioning in liver transplantation. Transpl Int. 2016;29:1147–54. doi: 10.1111/tri.12849 27564598
20. Datta G, Fuller BJ, Davidson BR. Molecular mechanisms of liver ischemia reperfusion injury: insights from transgenic knockout models. World J Gastroenterol. 2013;19(11):1683–98. doi: 10.3748/wjg.v19.i11.1683 23555157
21. Tan EK, Shuh M, Francois-Vaughan H, Sanders JA, Cohen AJ. Negligible oval cell proliferation following ischemia-reperfusion injury with and without partial hepatectomy. Ochsner J. 2017;17(1):31–7. 28331445
22. Behrends M, Martinez-Palli G, Niemann CU, Cohen S, Ramachandran R, Hirose R. Acute hyperglycemia worsens hepatic ischemia/reperfusion injury in rats. J Gastrointest Surg. 2010;14(3):528–35. doi: 10.1007/s11605-009-1112-3 19997981
23. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–5. doi: 10.1073/pnas.1530509100 12883005
24. Adebayo Michael AO, Ahsan N, Zabala V, Francois-Vaughan H, Post S, Brilliant KE, et al. Proteomic analysis of laser capture microdissected focal lesions in a rat model of progenitor marker-positive hepatocellular carcinoma. Oncotarget. 2017. doi: 10.18632/oncotarget.15219 28199961
25. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e. doi: 10.1093/nar/gkv007 25605792
26. Kramer A, Green J, Pollard J Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–30. doi: 10.1093/bioinformatics/btt703 24336805
27. Boylan JM, Sanders Ja, Neretti N, Gruppuso Pa. Profiling of the fetal and adult rat liver transcriptome and translatome reveals discordant regulation by the mechanistic target of rapamycin (mTOR). Am J Physiol Regul Integr Comp Physiol. 2015;309(1):R22–35. doi: 10.1152/ajpregu.00114.2015 25924882
28. Boylan JM, Francois-Vaughan H, Gruppuso PA, Sanders JA. Engraftment and repopulation potential of late gestation fetal rat hepatocytes. Transplantation. 2017;101(10):2349–59. doi: 10.1097/TP.0000000000001882 28749819
29. Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput. 2000:455–66. doi: 10.1142/9789814447331_0043 10902193
30. Braet F, Shleper M, Paizi M, Brodsky S, Kopeiko N, Resnick N, et al. Liver sinusoidal endothelial cell modulation upon resection and shear stress in vitro. Comp Hepatol. 2004;3(1):7. doi: 10.1186/1476-5926-3-7 15341660
31. Nakatsuka H, Sokabe T, Yamamoto K, Sato Y, Hatakeyama K, Kamiya A, et al. Shear stress induces hepatocyte PAI-1 gene expression through cooperative Sp1/Ets-1 activation of transcription. Am J Physiol Gastrointest Liver Physiol. 2006:26–34. doi: 10.1152/ajpgi.00467.2005 16500919
32. Abshagen K, Eipel C, Vollmar B. A critical appraisal of the hemodynamic signal driving liver regeneration. Langenbecks Arch Surg. 2012;397(4):579–90. doi: 10.1007/s00423-012-0913-0 22311102
33. Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DAH, Bauer C, et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J. 2001;15(13):2445–53. doi: 10.1096/fj.01-0125com 11689469
34. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43(D1):D512–D20. doi: 10.1093/nar/gku1267 25514926
35. Bateman A, Martin MJ, O'Donovan C, Magrane M, Alpi E, Antunes R, et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–D69. doi: 10.1093/nar/gkw1099 27899622
36. Cursio R, Colosetti P, Gugenheim J. Autophagy and liver ischemia-reperfusion injury. Biomed Res Int. 2015;2015:417590. doi: 10.1155/2015/417590 25861623
37. Schlegel M, Köhler D, Körner A, Granja T, Straub A, Giera M, et al. The neuroimmune guidance cue netrin-1 controls resolution programs and promotes liver regeneration. Hepatology. 2016;63(5):1689–705. doi: 10.1002/hep.28347 26573873
38. Wang X, Maretti-Mira AC, Wang L, DeLeve LD. Liver-selective mmp-9 inhibition in the rat eliminates ischemia-reperfusion injury and accelerates liver regeneration. Hepatology. 2018: 69(1):314–328. doi: 10.1002/hep.30169 30019419
39. Murry CE, Jennings RB, Reimer Ka. Preconditioning with ischemia: injury delay of lethal cell ischemic myocardium. Circulation. 1986;74(5):1224–136. doi: 10.1161/01.cir.74.5.1124 3769170
40. Karatzas T, Neri AA, Baibaki ME, Dontas IA. Rodent models of hepatic ischemia-reperfusion injury: Time and percentage-related pathophysiological mechanisms. J Surg Res. 2014;191(2):399–412. doi: 10.1016/j.jss.2014.06.024 25033703
41. Olthof PB, van Golen RF, Meijer B, van Beek AA, Bennink RJ, Verheij J, et al. Warm ischemia time-dependent variation in liver damage, inflammation, and function in hepatic ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis. 2017;1863(2):375–85. doi: 10.1016/j.bbadis.2016.10.022 27989959
42. Dergunova LV, Filippenkov IB, Stavchansky VV, Denisova AE, Yuzhakov VV, et al. Genome-wide transcriptome analysis using RNA-Seq reveals a large number of differentially expressed genes in a transient MCAO rat model. BMC Genomics 2018;19: 655. doi: 10.1186/s12864-018-5039-5 30185153
43. Berti R, Williams AJ, Moffett JR, Hale SL, Velarde LC, et al. Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab 2002;22: 1068–1079. doi: 10.1097/00004647-200209000-00004 12218412
44. Ye D, Li H, Wang Y, Jia W, Zhou J, et al. Circulating Fibroblast Growth Factor 21 Is A Sensitive Biomarker for Severe Ischemia/reperfusion Injury in Patients with Liver Transplantation. Sci Rep 2016;6: 19776. doi: 10.1038/srep19776 26806156
45. Planavila A, Redondo-Angulo I, Ribas F, Garrabou G, Casademont J, et al. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc Res 2015;106: 19–31. doi: 10.1093/cvr/cvu263 25538153
46. Ye L, Wang X, Cai C, Zeng S, Bai J, et al. (2019) FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/beta-klotho. Exp Neurol 317: 34–50. doi: 10.1016/j.expneurol.2019.02.013 30802446
47. Desai BN, Singhal G, Watanabe M, Stevanovic D, Lundasen T, et al. (2017) Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol Metab 6: 1395–1406. doi: 10.1016/j.molmet.2017.08.004 29107287
48. Barrier A. Ischemic preconditioning modulates the expression of several genes, leading to the overproduction of IL-1Ra, iNOS, and Bcl-2 in a human model of liver ischemia-reperfusion. FASEB J. 2005;19(12):1617–26. doi: 10.1096/fj.04-3445com 16195370
49. Prieto I, Monsalve M. ROS homeostasis, a key determinant in liver ischemic-preconditioning. Redox Biol. 2017;12(April):1020–5. doi: 10.1016/j.redox.2017.04.036 28511345
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts