Using archaeological and geomorphological evidence for the establishment of a relative chronology and evolution pattern for Holocene landslides
Autoři:
Mihai Niculiţă aff001; Mihai Ciprian Mărgărint aff001; Alexandru Ionuţ Cristea aff002
Působiště autorů:
Department of Geography, Geography and Geology Faculty, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
aff001; Department of Geography, Ştefan cel Mare University, Suceava, Romania
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0227335
Souhrn
Hilly regions around the world are one of the most vulnerable places for inhabitation, where landslides represent a permanent threat for their population. In some particular cases, in the past, due to their topographic features, areas affected by massive landslides served a real opportunity for the location of strategic and fortified settlements. In this study, we have extended a previous approach of correlation between landslides and archaeological heritage, adding 14 new representative case studies of landslided hillforts, a new period with landslided hillforts, and a new typology of relationship (landslided tumuli) for establishing relative chronologies for landslide inventories. The landslide mapping presented here supplements a previous inventory, which now has 1211 landslides, and it is based on the interpretation of high-resolution DEMs, geomorphometric derivatives, remote sensing images, and field validation. For one of the most characteristic sites (Băiceni settlement, Iaşi County), we used Electrical Resistivity Tomography (ERT) to assess the geometry of the compound and complex landslides. The current approach allowed us to acquire a more accurate relative chronology of landslide activity during the Holocene and Upper Pleistocene, and more importantly, to establish the pattern of landslides evolution in the Moldavian Plateau, North-Eastern Romania. The relict landslides are Lateglacial and Lower Holocene, the old landslides are post-Holocene Climatic Optimum and pre-Medieval, while the recent landslides are post-Medieval. The landslide magnitude decreased continuously, the new events being retrogressive reactivations of earlier events scarps and landslide bodies (as shown by the ERT data). Further studies on absolute dating will improve the relative chronology. Still, while not all the landslides can be dated, the methodology that we describe can be applied to increase the spatial density of the relative chronology. The presented approach can be used in other regions all over the world to establish the relative age of landslide inventories when archaeological topography can be related to landslide topography.
Klíčová slova:
Geomorphology – Archaeology – Archaeological dating – Rivers – Plateaus – Fungal evolution – Paleoclimatology – Holocene epoch
Zdroje
1. Brabb EE. The world landslide problem. Episodes. 1991; 14: 52–61.
2. Hungr O, Leroueil S, Picarelli L. The Varnes classification of landslide types, an update. Landslides. 2014; 11(2): 167–194.
3. Gariano SL, Guzzetti F. Landslides in a changing climate. Earth Sci Rev. 2016; 162: 227–252.
4. Watson RA, Wright HE. The Saidmarreh Landslide, Iran. In: Schumm SA, Bradley NC, editors. United States Contributions to Quaternary Research, Geological Society of America, Special Paper 123. 1969. p. 115–139.
5. Shoaei Z, Ghayoumian J. The Largest Debris Flow in the World, Seimareh Landslide, Western Iran. In: Sassa K, editor. Environmental Forest Science. Forestry Sciences, vol. 54. Dordrecht: Springer; 1998. p. 553–561.
6. Philip H, Ritz J-F. Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia). Geology. 1999; 27: 211–214.
7. Mather AE, Griffiths JS, Stokem M. Anatomy of fossil landslide from the Pleistocene of SE Spain. Geomorphology. 2003; 50: 135–149
8. Strasser MM, Schlunegger F. Erosional processes, topographic length-scales and geomorphic evolution in arid climatic environments: the “Lluta collapse”, northern Chile. Int J Earth Sci. 2005; 94: 433–446.
9. Pánek T. Recent progress in landslide dating. A global overview. Prog Phys Geogr. 2015; 39: 168–198.
10. Aylsworth JM, Lawrence DE, Guertin J. Did two massive earthquakes in the Holocene induce widespread landsliding and near-surface deformation in part of the Ottawa Valley, Canada? Geology. 2000; 28(10): 903–906.
11. Trauth MH, Alonso RA, Haselton KR, Hermanns RL, Strecker MR. Climate change and mass movements in the northwest Argentine Andes. Earth Planet Sci Lett. 2000; 179: 243–256.
12. Trauth MH, Bookhagen B, Marwan N, Strecker MR. Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes. Palaeogeogr Palaeoclimatol Palaeoecol. 2003; 194: 109–121.
13. Unkel I, Ehret D, Rohn J. Recurrence analysis of the mass movement activity at Stambach (Austria) based on radiocarbon dating. Geomorphology. 2013; 190: 103–111.
14. Evans SG. Single-event landslides resulting from massive rock slope failure: characterizing their frequency and impact on society. In: Evans SG, editor. Landslides from Massive Rock Slope Failure. Springer; 2006. p. 53–73.
15. Densmore AL, Anderson RS, McAdoo BG, Ellis MA. Hillslope evolution by bedrock landslides. Science. 1997; 275: 369–372. doi: 10.1126/science.275.5298.369 8994029
16. Hovius N, Stark CP, Allen PA. Sediment flux from a mountain belt derived by landslide mapping. Geology. 1997; 25: 231–234.
17. Densmore AL, Ellis MA, Anderson RS. Landsliding and the evolution of normal-fault-bounded mountains. J Geophys Res Solid Earth. 1998; 103(B7): 15203–15219.
18. Densmore AL, Hovius N. Topographic fingerprints of bedrock landslides. Geology. 2000; 28: 371–374.
19. Korup O. Geomorphic imprint of landslides on alpine rivers system, southwest New Zeeland. Earth Surf Process Landf. 2005; 30: 783–800.
20. Lefebvre G. Sensitive clays of Eastern Canada: from geology to slope stability. In: Thakur V, L’Heureux JS, Locat A, editors. Landslides in sensitive clays. Advances in natural and technological hazards research, vol. 46. Cham: Springer; 2017. p. 15–34.
21. Geertsema M, Pojar JJ. The influence of landslides on biophysical diversity–a perspective from British Columbia. Geomorphology. 2007; 89(1–2): 55–69.
22. Geertsema M, Highland L, Vaugeouis L. Environmental Impact of Landslides. In: Sassa K, Canuti P, editors. Landslides–Disaster Risk Reduction. Berlin: Springer; 2009. p 589–607.
23. Nadim F, Jaedicke C, Smebye H, Kalsnes B. Assessment of Global Landslide Hazard Hotspots. In: Sassa K, Rouhban B, Briceño S, McSaveney M, He B, editors. Landslides: Global Risk Preparedness. Berlin: Springer; 2013. p 59–71.
24. De Graf JV, Bryce R, Jibson RW, Moa S, Roges CT. Landslides: their extent and significance in the Caribbean. In: Brabb EE, Harrod BL, editors. Landslides: extent and economic significance: Proceedings of the 28th International Geologic Congress, symposium on landslides; 1989 17 July; Washington DC. Rotterdam: A.A. Balkema; 1989. p. 51–80.
25. Schuster RL, Highland LM. Socioeconomic and environmental impacts of landslides in the western hemisphere. 2001 U.S. Geological Survey Open File Report 01–1276.
26. Kjekstad O, Highland L. Economic and social impact of landslides. In: Sassa K, Canuti P, editors. Landslides–Disaster Risk Reduction. Berlin: Springer; 2009. p. 573–588.
27. Petley D. Global patterns of loss of life from landslides. Geology. 2012; 40(10): 927–930.
28. Guthrie R. Socio-economic significance, Canadian technical guidelines and best practices related to landslides: a national initiative for loss reduction. 2013 Geological Survey of Canada Open File 7311.
29. Budimir MEA, Atkinson PM, Lewis HG. Earthquake-and-landslide events are associated with more fatalities than earthquakes alone. Nat Hazards. 2014; 72(2): 895–914.
30. Van Den Eeckhaut M, Poesen J, Gullentops F, Vandekerckhove L, Hervás J. Regional mapping and characterization of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders. Quat Res. 2011; 75: 721–733.
31. Tarolli P, Sofia G, Dalla Fontana G. Geomorphic features extraction from high resolution topography: landslide crowns and bank erosion. Nat Hazards. 2012; 61: 65–83.
32. Jaboyedoff M, Oppikofer T, Abellán A, Derron M-H, Loye A, Metzger R, et al. Use of LIDAR in landslide investigations: a review. Nat Hazards. 2012; 61: 5–28.
33. Tarolli P. High-resolution topography for understanding Earth surface processes: opportunities and challenges. Geomorphology. 2014; 216: 295–312.
34. Tarolli P, Sofia G. Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology. 2016; 255: 140–161.
35. Tarolli P, Cao W, Sofia G, Evans D, Ellis EC. From features to fingerprints: a general diagnostic framework for anthropogenic geomorphology. Prog Phys Geogr. 2019; 43: 95–128.
36. Van Den Eeckhaut M, Poesen J, Govers G, Verstraeten G, Demoulin A. Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett. 2007; 256: 588–603.
37. Kasprzak M, Trakzyk A. LIDAR and 2D Electrical Resistivity Tomography as a Supplement of Geomorphological Investigations in Urban Areas: a Case Study from the City of Wrocław (SW Poland). Pure Appl Geophys. 2014; 171: 835–855.
38. Migoń P, Kacprzak A, Malik I, Kasprzak M, Owczarek P, Wistuba M, et al. Geomorphological, pedological and dendrochronological signatures of a relict landslide terrain, Mt Garbatka (Kamienne Mts), SW Poland. Geomorphology. 2014; 219: 213–231.
39. Niculiță M, Mărgărint MC, Santangelo M. Archaeological evidence for Holocene landslide activity in the Eastern Carpathian lowland. Quat Int. 2016; 415: 175–189.
40. Niculiţă M. A landform classification schema for structural landforms of the Moldavian platform (Romania). In: Hengl T, Evans IS, Wilson JP, Gould M, editors. Proceedings of Geomorphometry 2011; 2011 September 7–11; Redlands, CA. 2011. p. 129–132.
41. Niculiță M, Mărgărint MC, Santangelo M. Pleistocene landslides in the Moldavian Plateau, Eastern Romania. Georeview. 2016; 26(2): 67.
42. Mărgărint MC, Niculiţă M. Landslide type and pattern in Moldavian Plateau, NE Romania. In: Rădoane M, Vespremeanu-Stroe A, editors. Landform Dynamics and Evolution in Romania. Springer Geography; 2017. p 271–304.
43. Niculiță M, Mărgărint MC. Landslides and fortified settlements as valuable cultural geomorphosites and geoheritage sites in the Moldavian Plateau, North-Eastern Romania. Geoheritage. 2018; 10: 613–634. Correction in: Geoheritage. 2008; 10: 635.
44. Niculiță M, Mărgărint MC. Landslide inventory for the Moldavian Plateau. In: Proceedings of International Conference Analysis and Management of Changing Risks for Natural Hazards; 2014 November 18–19; Padua, Italy. 2014. p. 10.
45. Simionescu I. [The geologic constitution of Prut bank in Northern Moldavia]. Publicaţiunile Fondului Vasilie Adamachi. 1902; 7: 1–27. Romanian.
46. Chiţimuş V. 2013. [Geologic structure of the Northern part of the Moldavian Platform]. Bucharest: Agir Press; 2013. Romanian.
47. Macarovici N. Le development des dépôts sarmatiens en Moldavie (Roumanie). In: Chica I, Senes J, Brestenská E, editors. Chronostratigraphie und Neostratotypen: Miozän der Zentralen Paratethys, Band IV, M5 Sarmatien. Stuttgart, Germany: Schweizerbart Science Publishers; 1974. p. 114–118. French.
48. Ionesi L. [Geology of platform units and Northern Dobrogea Orogene]. Bucharest: Technical Press; 1994. Romanian.
49. Brînzilă M. [The geology of the Moldavian Plain]. Iasi: Corson Press; 1999. Romanian.
50. Ionesi L, Ionesi B, Roșca V, Lungu A, Ionesi V. [Middle and Upper Sarmatian on Moldavian Platform]. Bucharest: Romanian Academy Press; 2005. Romanian.
51. Dill HG, Iancu GO, Ionesi V, Sârbu S, Balintoni I, Botz R. Petrography and mineral chemistry of Bessarabian siliciclastic rocks in the Eastern Carpathians Foreland Basin (Romania and Republic of Moldova). Neues Jahrbuch für Geologie und Paläontologie–Abhandlungen. 2012; 263(3): 199–226.
52. Tufescu V. [Observations regarding the Western boundary of Jijia Depression]. Bucharest: Imprimeria Națională București; 1935. Romanian.
53. Ştefan P. [Geology of the Dealul Mare-Hîrlău region and perspectives regarding mineral resources] [PhD thesis]. Iasi: Alexandru Ioan Cuza University of Iasi; 1989. Romanian.
54. Ungureanu A. [The geography of Romanian plateaus and plains]. Iasi: Alexandru Ioan Cuza University of Iasi Press; 1993. Romanian.
55. Niculiță M, Mărgărint MC, Cristea I. Relict landslides, gullies and geoheritage sites–Băiceni village. In: Niculiță M, Mărgărint MC, editors. Proceedings of Romanian Geomorphology Symposium; vol 1, 2017 11–14 May; Iasi, Romania. Iasi: Alexandru Ioan Cuza University of Iași Press; 2017. p. 133–136.
56. Jeanrenaud P. [Geologic research between Crasna and Prut valleys]. Analele Ştiinţifice ale Universităţii Alexandru Ioan Cuza din Iaşi (serie nouă), secţiunea 2, Geologie. 1965; 11: 31–44. Romanian.
57. Jeanrenaud P. [Clarifications concerning the Meotian Age in Moldavia]. Analele Științifice ale Universităţii Alexandru Ioan Cuza din Iași (serie nouă), secțiunea 2, Geologie. 1969; 15:45–55. Romanian.
58. Jeanrenaud P. [Geologic map of the Central Moldavia between Siret and Prut]. Analele Științifice ale Universității Alexandru Ioan Cuza din Iași (serie nouă), secțiunea 2, Geologie. 1971; 17: 65–78. Romanian.
59. Jeanrenaud P, Saraiman A. [Geology of the Central Moldavia between Siret and Prut]. Alexandru Ioan Cuza University of Iasi Press; 1995. Romanian.
60. Bejenaru A, Niculiță M. 2017. Landslide inventory of the Crasna catchment, Moldavian Plateau, Romania. In: Niculiță M, Mărgărint MC, editors. Proceedings of Romanian Geomorphology Symposium; vol 1, 2017 11–14 May; Iasi, Romania. Iasi: Alexandru Ioan Cuza University of Iași Press; 2017. p. 28–31.
61. Niculiţă M, Andrei A, Lupu C. 2017a. The landslide database of North-Eastern Romania. In: Niculiță M, Mărgărint MC, editors. Proceedings of Romanian Geomorphology Symposium; vol 1, 2017 11–14 May; Iasi, Romania. Iasi: Alexandru Ioan Cuza University of Iași Press; 2017. p. 81–84.
62. Mândrescu N. Geological hazard evaluation in Romania. Eng Geol. 1984; 20: 39–47.
63. Havenith H-S, Torgoev A, Braun A, Schlögel R, Micu M. A new classification of earthquake-induced landslide event sizes based on seismotectonic, topographic, climatic and geologic factors. Geoenvironmental Disasters. 2016; 3:6.
64. Terhorst B, Kreja R. Slope stability modelling with SINMAP in a settlement area of the Swabian Alb. Landslides. 2009; 6(1–4): 309–319.
65. Jäger D, Sandmeier C, Schwindt D, Terhorst B. Geomorphological and geophysical analyses in a landslide area near Ebermannstadt, Northern Bavaria. J Quat Sci. 2013; 62: 150–161.
66. Pánek T, Smolková V, Hradecký J, Kirchner K. Landslide dams in the northern part of Czech flysch Carpathians: geomorphic evidence and imprints. Studia Geomorphologica Carpatho-Balcanica. 2007; 41: 77–96.
67. Rădoane M, Nechita C, Chiriloaei F, Rădoane N, Popa I, Roibu, C, et al. Late Holocene fluvial activity and correlations with dendrochronology of subfossil trunks: Case studies of northeastern Romania. Geomorphology. 2015; 239: 142–159.
68. Rădoane M, Perșoiu I, Chiriloaiei F, Robu D, Rădoane N, Nechita C. 2017. History of Holocene fluvial activity in Romania: evidences based on absolute dating. In: Niculiță M, Mărgărint MC, editors. Proceedings of Romanian Geomorphology Symposium; vol 1, 2017 11–14 May; Iasi, Romania. Iasi: Alexandru Ioan Cuza University of Iași Press; 2017. p. 133–136.
69. Gerasimenko N, Ridush B, Korzun J. Pollen and lithological data from the Bukovynka Cave deposits as recorders of the Late Pleistocene and Holocene climatic change in the eastern foothills of the Carpathian Mountains (Ukraine). In: Mîndrescu M, Grădinaru I, editors. Late Pleistocene and Holocene Climatic Variability in the Carpathian-Balkan Region, Proceedings of CBW-2014; 2014 November 6–9; University of Babes-Bolyai Cluj-Napoca, Romania. Suceava: Ștefan cel Mare University Press; Georeview. 2014; 24(2): 54–58.
70. Bondar K, Ridush B. Rockmagnetic and palaeomagnetic studies of unconsolidated sediments of Bukovynka Cave (Chernivtsi region, Ukraine). Quat Int. 2015; 357: 125–135.
71. Petrescu-Dîmboviţa M, Teodor DG. [Fortification systems from Early Medieval Period at the Eastern Carpathians. The settlement from Fundu Herţii–Botoşani County]. Iasi: Junimea Press; 1987. Romanian.
72. Crîşmaru A. [New archaeological discoveries on Podriga Valley—Botoşani County]. Hierasus. 1979; 2: 97–120. Romanian.
73. Melniciuc A. [Some consideration regarding the typology and distribution of the Cucutenian settlements (A and B phases) in Jijia Upper and Başeu Plain]. Acta-Moldaviae-Septentrionalis. 2011; 10: 20–29. Romanian.
74. Şovan OL. 2016. [Archaeological repertoire of Botoşani County]. 2nd ed. Botosani: Bibliotheca Archaeologica “Hierasus” Monographica IV, Muzeul Judeţean Botoşani. Romanian.
75. Florescu AC, Florescu M. 2012. [The thraco-getic fortresses from Stâncești (Botoșani County)]. Suceava: Cetatea de Scaun Press; 2012. Romanian.
76. Nestor I, Alexandrescu A, Brătianu A, Comşa E, Perju S, Vieru I. [The reports of archaeological collectives concerning the diggings from 1949 campaign–Study of the society from Early Barbarian Age from Northern Moldavia–Activity on Iaşi-Botoşani-Dorohoi archaeological sites]. Studii și cercetări de istorie veche. 1950; 1: 27–32. Romanian.
77. Nestor I, Alexandrescu A, Comşa E, Zaharia-Petrescu E, Zirra V. [The diggings from Jijia Valley archaeological site—Iaşi-Botoşani-Dorohoi—in 1950]. Studii și cercetări de istorie veche. 1951; 2: 51–76. Romanian.
78. Zaharia N, Petrescu-Dîmbovița M, Zaharia E. [Settlements from Moldavia: from Paleolithic to the 18th Century]. Bucharest: Romanian Academy Press; 1970. Romanian.
79. Ștefan AS. Les fortifications du premier Age du Fer de Cotnari (Départment de Iassy, Moldavie, Roumanie). Photo-Interprétation. 1990; 29(6): 45–57. French.
80. Tafrali O. [The prehistoric resort of Boghiu point]. Arta şi Arheologia. 1937; 11–12: 51–54. Romanian.
81. Petrescu-Dîmboviţa M, Brăteanu A, Dincă M, Dinu M, Florescu A, Ordentlich I, et al. [Trușești archaeological site]. Studii și cercetări de istorie veche. 1954; 5(1–2): 8–28.
82. Iconomu C. [Archaeological research in the Hallstat fortress from Pocreaca–Iaşi]. Arheologia Moldovei. 1996; 19: 21–56. Romanian.
83. Florescu AC, Melinte G. [Hallstattian fortresses, recently discovered in North-Eastern part of Central Moldavia]. Carpica. 1971; 4: 129–132. Romanian.
84. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, et al. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci Model Dev. 2015; 8: 1991–2007.
85. McKean J, Roering J. Objective landslide detection and surface morphology mapping using high-resolution airbone laser altimetry. Geomorphology. 2004; 57: 331–351.
86. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Moyersons J, Nyssen J, et al. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology. 2005; 67: 351–363
87. Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P. Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Science. 2007; 7: 637–650.
88. Demers D, Robitaille D, Lavoie A, Paradis S, Fortin A, Ouellet A. The use of LiDAR airborne data for retrogressive landslides inventory in sensitive clays, Québec, Canada. In: Thakur VJ, L’Heureux S, Locat A, editors. Landslides in sensitive clays. Advances in natural and technological hazards research, vol. 46. Cham: Springer; 2017. p. 279–288.
89. Cruden DM, Varnes DJ. Landslide types and processes. In: Turner AK, Schuster RL, editors. Landslides, investigation and mitigation. Transportation Research Board Special Report 247. Washington DC: 1996. p 36–75.
90. Carrara A, Merenda L. Landslide inventory in northern Calabria, southern Italy. Geol Soc Am Bull. 1976; 87: 1153–1162.
91. McCalpin J. Preliminary age classification of landslides for inventory mapping. In: Proceedings 21st annual Engineering Geology and Soils Engineering Symposium; 1984 April 5–6; Moscow, Idaho. University of Idaho: 1984. p. 99–111.
92. Wieczorek G. Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bulletin of the Association of Engineering Geologists. 1984; 21: 337–342.
93. Schulz WH. Landslides mapped using LIDAR imagery, Seattle, Washington. 2004 US Geol. Surv. Open-File Rep. 1396.
94. Guzzetti F. Landslide hazard and risk assessment. [PhD thesis] Bonn: RheinischenFriedrich-Wilhelms-Universität Bonn; 2005.
95. Rib HT, Liang T. Recognition and identification. In: Schuster RL, Krizek RJ, editors. Landslide analysis and control. National Academy of Sciences, Washington; 1978. p 34–80.
96. Varnes DJ. Landslide Hazard Zonation: A Review of Principles and Practice, Natural Hazards. Paris: UNESCO; 1984.
97. Soeters R, Van Westen CJ. Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL, editors. Landslides, investigation and mitigation. Transportation Research Board Special Report 247. Washington DC: 1996. p 129–177.
98. Petschko H, Bell T, Glade T. Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling. Landslides. 2015; 13: 857–872.
99. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P. Landslides, earthquake, and erosion. Earth Planet Sci Lett. 2004; 229: 45–59.
100. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P. Landslide inventories and their statistical properties. Earth Surf Process Landf. 2004; 29: 687–711.
101. Korup O. Distribution of landslides in south-west New Zeeland. Landslides. 2005; 2: 43–51.
102. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K. Landslide inventory maps: New tools for an old problem. Earth Sci Rev. 2012; 112(1–2): 42–66
103. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2008. http://www.R-project.org.
104. Rossi M, Ardizzone F, Cardinali M, Fiorucci F, Marchesini I, Mondini AC, et al. 2012. A tool for the estimation of the distribution of landslide area. Geophysical Research Abstracts. 2012;14: EGU2012-9438-1.
105. Schrott L, Sass O. Application of field geophysics in geomorphology. Advances and limitations exemplified by case studies. Geomorphology. 2008; 93: 55–73.
106. Scapozza C, Laigre L. The contribution of Electrical Resistivity Tomography (ERT) in Alpine dynamics geomorphology: case studies from the Swiss Alps. Géomorphologie: relief, processus, environnement. 2014; 20: 27–42.
107. Baines D, Smith DG, Froese DG, Bauman P, Nimek G. Electrical resistivity ground imaging (ERGI): a new tool for mapping the lithology and geometry of channel-belts and valley-fills. Sedimentology. 2002; 49: 441–449.
108. Trantina JA. Investigations of landslides by seismic and electrical resistivity methods. In: Field Testing of Soils, American Society for Testing and Materials Special Publication No. 322. 1962. p 120–134.
109. Moore RW. Electrical resistivity investigations in geological, geophysical and engineering investigations of the Loveland Basin landslide, Clear Creek County, Colorado, 1972. U.S. Geol. Surv., Prof. Pap., 673-B.
110. Bogoslovsky VA, Ogilvy AA. Geophysical methods for the investigation of landslides. Geophysics. 1977; 42(3): 562–571.
111. Müller K. Geophysical methods in the investigation of slope failures. Bulletin of the International Association of Engineering Geology. 1977; 16: 227–229.
112. McCann DM, Forster A. Reconnaissance geophysical methods in landslide investigations. Eng Geol. 1990; 29: 59–78.
113. Hack R. Geophysics for slope stability. Surv Geophys. 2000; 1(4): 423–448.
114. Godio A, Bottino G. Electrical and electromagnetic investigation for landslide characterization. Phys Chem Earth (C). 2001; 26(9): 705–710.
115. Cummings D, Clark BR. Use of seismic refraction and electrical resistivity surveys in landslide investigations. Environmental and Engineering Geoscience. 1988; 25(4): 459–464.
116. Bélanger K, Locat A, Fortier R, Demers D. Geophysical and geotechnical characterization of a Sensitive clay deposit in Brownsburg, Quebec. In: Thakur V, L’Heureux JS, Locat A, editors. Landslides in sensitive clays. Advances in natural and technological hazards research, vol. 46. Cham: Springer; 2017. p. 77–86.
117. Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Sdao F, Rizzo E. High-resolution geoelectrical tomographies in the study of the Giarrossa landslide (southern Italy). Bulletin of Engineering Geology and the Environment. 2003; 62: 259–268.
118. Fridel S, Thielen A, Springman SM. Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing. J Appl Geophy. 2006; 60:100–114.
119. Baranwal VC, Rønning JS, Solberg I-L, Dalsegg E, Tønnesen JF, Long M. Investigation of a sensitive clay landslide area using frequency-domain helicopter-borne EM and ground geophysical methods. In: Thakur V, L’Heureux JS, Locat A, editors. Landslides in sensitive clays. Advances in natural and technological hazards research, vol. 46. Cham: Springer; 2017. p. 475–485.
120. Bell R, Kruse J-E, Garcia A, Glade T, Hördt A. Subsurface investigations of landslides using geophysical methods–geoelectrical applications in the Swabian Alb (Germany). Geogr Helv. 2006; 61(3): 201–208.
121. Okpoli CC. Sensitivity and resolution capacity of electrode configurations. International Journal of Geophysics. 2013; 2013: 1–12.
122. Reynolds J.M. An introduction to applied and environmental geophysics, 2d ed. Wiley-Blackwell; 2011.
123. Loke MH, Barker RD. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys Prospect. 1996; 44(1): 131–152.
124. Cihodaru C, Vulpe R, Petre R, Kiss Ş. [Archaeological research from Şuletea and Bârlăleşti—Murgeni Region]. Studii și cercetări de istorie veche. 1951; 2: 217–288. Romanian.
125. Moscalu E. [Rescue diggings from Cotîrgaci–Roma commune, Botoşani County]. Hierasus. 1989; 7–8: 117–145. Romanian.
126. Petrescu-Dîmboviţa M, Bîrsan M, Bold E, Boroneanț V, Cazacu P, Dinu M, et al. [The Hlincea Iași archaeological site]. Studii și cercetări de istorie veche. 1952; 4(1–2): 233–251. Romanian.
127. Buzdugan C, Alexoaie I. [Archaeological diggings in a tumulus from Roma commune, Botoșani County]. Hierasus. 1989; 7–8: 105–115. Romanian.
128. Frînculeasa A, Preda B, Heyd V. Pit-Graves, Yamnaya and Kurgans along the Lower Danube: disentangling IVth and IIIrd millennium BC burial customs, equipment and chronology. Praehistorische Zeitschrift. 2015; 90(1–2): 45–113.
129. Heyd V. Yamnaya Groups and Tumuli west of the Black Sea. In: Ancestral Landscape. Burial mounds in the Copperand Bronze Ages (Central and Eastern Europe–Balkans–Adriatic–Aegean, 4th-2nd millennium B.C.) Proceedings of the International Conference held in Udine, May 15th-18th 2008. Lyon: Maison de l’Orient et de la Méditerranée Jean Pouilloux; 2012. p. 535–555.
130. Lascu I, Wohlfarth B, Onac BP, Björk S, Kromer B. A Late Glacial paleolake record from an up-dammed river valley in northern Transylvania, Romania. Quat Int. 2015; 388: 87–96.
131. Gârbacea V, Tanțău I, Pop O, Benea M. First radiocarbon dating of landslides (“Glimee”) in Romania. Carpathian Journal of Earth and Environmental Sciences. 2015; 10(3): 217–222.
132. Mîndrescu M, Iosep I, Cristea I-A, Frogaci D, Popescu D-A. 2010. [Iezer and Bolătău lakes–the oldest natural dammed lakes formed by landslides in Romania–Obcina Feredeului]. In: Gâștescu P, Brețcan P, editors. Water Resources from Romania. Vulnerability to the pressure of man’s activities, Conference Proceedings; 2010 June 11–13; Targoviste, Romania. Targoviste: Transversal Press; 2010. p. 288–298. Romanian.
133. Mîndrescu M, Németh A, Grădinaru I, Bihari A, Németh T, Fekete J, et al. Bolătău sediment record—Chronology, microsedimentology and potential for a high resolution multimillennial paleoenvironmental proxy archive. Quat Geochronol. 2016; 32: 11–20.
134. Florescu G, Hutchinson SM, Kern Z, Mîndrescu M, Cristea IA, Mihăilă D, Łokas E, Feurdean A. Last 1000 years of environmental history in Southern Bucovina, Romania: A high resolution multi-proxy lacustrine archive. Palaeogeogr Palaeoclimatol Palaeoecol. 2017; 473: 26–40.
135. Ilinca V, Gheuca I. The Red Lake Landslide (Ucigaşu Mountain, Romania), Carpathian Journal of Earth and Environmental Sciences. 2011; 6(1): 263–272.
136. Hradecký J, Pánek T, Smolková V, Šilhán K. Dating of the landslide activity in the Czech part of the Outer Western Carpathians and its palaeoenviromental significance. Geologica Balcanica. 2010; 39(1–2): 160–161.
137. Pánek T, Hartvich F, Jankovská V, Klimeš J, Tábořík P, Bubík M, et al. Large Late Pleistocene landslides from the marginal slope of the Flysch Carpathians. Landslides. 2014; 11: 981–992.
138. Pánek T, Hradecky J, Smolkova V, Silhan K. Gigantic low-gradient landslides in the northern periphery of the Crimean Mountains (Ukraine). Geomorphology. 2008; 95: 449–473.
139. Pánek T, Smolková V, Hradecký J, Baroň I, Šilhán K. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carphatians (Czech Republic/Slovakia). Quat Res. 2013; 80: 33–46.
140. Tămaş T, Onac BP, Bojar AV. Lateglacial-Middle Holocene stable isotope records in two coeval stalagmites from the Bihor Mountains, NW Romania. Geological Quarterly. 2005; 49(2): 185–194.
141. Feurdean A, Klotz S, Brewer S, Mosbrugger V, Tămaș T, Wohlfarth B. Lateglacial climate development in NW Romania—Comparative results from three quantitative pollen-based methods. Palaeogeogr Palaeoclimatol Palaeoecol. 2008; 265: 121–133.
142. Schrøder N, Hojlund L, Bitsch RJ. 10,000 years of climate change and human impact on the environment in the area surrounding Lejre. The Journal of Transdisciplinary Environmental Studies. 2004; 3: 1–27.
143. Onac BP, Constantin S, Lundberg J, Lauritzen S-E. Isotopic climate record in a Holocene stalagmite from Urşilor Cave (Romania). J Quat Sci. 2002; 17: 319–327.
144. Magyari EK, Demény A, Buczkó K, Kern Z, Vennemann T, Fórizs I, et al. A 13,600-year diatom oxygen isotope record from the South Carpathians (Romania): reflection of winter conditions and possible links with North Atlantic circulation changes. Quat Int. 2013; 293: 136–149.
145. Braun M, Hubay K, Magyari EK, Veres D, Papp I, Bálint M. Using linear discriminant analysis (LDA) of bulk lake sediment geochemical data to reconstruct lateglacial climate changes in the South Carpathian Mountains. Quat Int. 2013; 293: 114–122.
146. Gheorghiu DM, Hosu M, Corpade C, Xu S. Deglaciation constraints in the Parâng Mountains, Southern Romania, using surface exposure dating. Quat Int. 2015; 388: 156–167.
147. Emandi EI. [Plant culture in Northern Molvavia, IX to XVth centuries in the light of palaeobotanical research]. Hierasus. 1979; 2: 51–85. Romanian.
148. Necula N, Niculiță M, Tessari G, Floris M. InSAR analysis of Sentinel-1 data for monitoring landslide displacement of the north-eastern Copou hillslope, Iaşi city, Romania. In: Niculiță M, Mărgărint MC, editors. Proceedings of Romanian Geomorphology Symposium; vol 1, 2017 11–14 May; Iasi, Romania. Iasi: Alexandru Ioan Cuza University of Iași Press; 2017. p. 85–88.
149. Necula N, Niculiță M. Landslide reactivation susceptibility modeling in Iași Municipality. Revista de geomorfologie. 2017; 19:101–117.
150. Necula N, Niculiță M, Floris M. Identifying slow-moving landslide deformations affecting rural areas using Interferometric Stacking techniques and Sentinel-1 data. In: Micu M, Comănescu L, editors. Proceedings of the International Conference From field mapping and landform analysis to multi-risk assessment: challenges, uncertainties and transdisciplinarity; 2018 May 16–20; Buzău, Romania. Bucharest: Bucharest University Press; 2018. p. 81–84.
151. Meentemeyer RK, Moody A. Automated mapping of conformity between topographic and geological surfaces. Comput Geosci. 2000; 26 (7): 815–829.
152. Martiniuc C, Băcăuanu V. [Landslides and how they can be prevented or stabilized]. Natura, Seria Geografie-Geologie. 1961; 4: 25–35. Romanian.
153. Barbu N, Stănescu I. [On the landslides from Burla–Botoşani]. Analele Științifice ale Universității Alexandru Ioan Cuza din Iași (serie nouă), secțiunea 2, Geologie, geografie. 1977; 23: 125–129. Romanian.
154. Schwindt D, Sandmeier C, Büdel C, Jäger D, Wilde M, Terhorst B. The inner structure of landslides and landslide-prone slopes in south German cuesta landscapes assessed by geophysical, geomorphological and sedimentological approaches [abstract]. 2016; Geophysical Research Abstracts. 18:EGU2016-17007-1.
155. Lee EM, Jones DKC. Landslide risk assessment. Thomas Telford; 2004.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Somatizace stresu – typické projevy a možnosti řešení
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts