Pathologic changes and immune responses against Coxiella burnetii in mice following infection via non-invasive intratracheal inoculation
Autoři:
Xueyuan Hu aff001; Yonghui Yu aff001; Junxia Feng aff001; Mengjiao Fu aff001; Lupeng Dai aff001; Zhiyu Lu aff001; Wenbo Luo aff001; Jinglin Wang aff001; Dongsheng Zhou aff001; Xiaolu Xiong aff001; Bohai Wen aff001; Baohua Zhao aff002; Jun Jiao aff001
Působiště autorů:
State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, China
aff001; College of Life Sciences, Hebei Normal University, Yuhua District, Shijiazhuang, Hebei, China
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225671
Souhrn
Q fever is a worldwide zoonosis caused by Coxiella burnetii. Human Q fever is typically acquired through inhalation of contaminated aerosols, resulting in an initial pulmonary infection. In this study, BALB/c mice were infected with C. burnetii via an intratracheal (IT) route using a non-invasive aerosol pulmonary delivery device to directly place the living C. burnetii organisms into the lungs of the mice. The bacterial loads, pathological lesions, and antibody and cellular responses were analyzed and compared with those of mice infected via an intraperitoneal (IP) route. Compared with mice infected via an IP route, mice infected via an IT route exhibited a higher bacterial load and more severe pathological lesions in the heart and lungs at days 3 and 7 post-infection (pi). The levels of interferon-γ and IL-12p70 in the serum of mice infected via the IT route were significantly higher than those of mice infected via the IP route at day 3 pi. In conclusion, this murine model of acute C. burnetii infection via IT inoculation closely resembles the natural route of C. burnetii infection than that of IP injection. Thus, this newly developed model will be useful for investigating the pathogenesis and immunity of C. burnetii aerosol infection, as well as for the evaluation of therapeutic drugs and preventive vaccines of Q fever.
Klíčová slova:
Cytokines – Spleen – Mouse models – Animal models of infection – Aerosols – Q fever – Coxiella burnetii
Zdroje
1. Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12(4):518–53. Epub 1999/10/09. 10515901; PubMed Central PMCID: PMC88923.
2. Gami AS, Antonios VS, Thompson RL, Chaliki HP, Ammash NM. Q fever endocarditis in the United States. Mayo Clin Proc. 2004;79(2):253–7. Epub 2004/02/13. doi: 10.4065/79.2.253 14959922.
3. Chang K, Yan JJ, Lee HC, Liu KH, Lee NY, Ko WC. Acute hepatitis with or without jaundice: a predominant presentation of acute Q fever in southern Taiwan. J Microbiol Immunol Infect. 2004;37(2):103–8. Epub 2004/06/08. 15181492.
4. Nourse C, Allworth A, Jones A, Horvath R, McCormack J, Bartlett J, et al. Three cases of Q fever osteomyelitis in children and a review of the literature. Clin Infect Dis. 2004;39(7):e61–6. Epub 2004/10/09. doi: 10.1086/424014 15472834.
5. Stein A, Louveau C, Lepidi H, Ricci F, Baylac P, Davoust B, et al. Q fever pneumonia: virulence of Coxiella burnetii pathovars in a murine model of aerosol infection. Infect Immun. 2005;73(4):2469–77. Epub 2005/03/24. doi: 10.1128/IAI.73.4.2469-2477.2005 15784593; PubMed Central PMCID: PMC1087393.
6. Sellens E, Bosward KL, Willis S, Heller J, Cobbold R, Comeau JL, et al. Frequency of Adverse Events Following Q Fever Immunisation in Young Adults. Vaccines (Basel). 2018;6(4). Epub 2018/12/16. doi: 10.3390/vaccines6040083 30551615; PubMed Central PMCID: PMC6313871.
7. Bernasconi MV, Casati S, Peter O, Piffaretti JC. Rhipicephalus ticks infected with Rickettsia and Coxiella in Southern Switzerland (Canton Ticino). Infect Genet Evol. 2002;2(2):111–20. Epub 2003/06/12. doi: 10.1016/s1567-1348(02)00092-8 12797987.
8. Lang GH. Q fever. Vet Rec. 1988;123(22):582–3. Epub 1988/11/26. 3212909.
9. Stein A, Raoult D. Pigeon pneumonia in provence: a bird-borne Q fever outbreak. Clin Infect Dis. 1999;29(3):617–20. Epub 1999/10/26. doi: 10.1086/598643 10530457.
10. Roest HI, Tilburg JJ, van der Hoek W, Vellema P, van Zijderveld FG, Klaassen CH, et al. The Q fever epidemic in The Netherlands: history, onset, response and reflection. Epidemiol Infect. 2011;139(1):1–12. Epub 2010/10/06. doi: 10.1017/S0950268810002268 20920383.
11. Russell-Lodrigue KE, Andoh M, Poels MW, Shive HR, Weeks BR, Zhang GQ, et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect Immun. 2009;77(12):5640–50. Epub 2009/09/30. doi: 10.1128/IAI.00851-09 19786560; PubMed Central PMCID: PMC2786457.
12. Melenotte C, Lepidi H, Nappez C, Bechah Y, Audoly G, Terras J, et al. Mouse Model of Coxiella burnetii Aerosolization. Infect Immun. 2016;84(7):2116–23. Epub 2016/05/11. doi: 10.1128/IAI.00108-16 27160294; PubMed Central PMCID: PMC4936361.
13. Brain JD, Knudson DE, Sorokin SP, Davis MA. Pulmonary distribution of particles given by intratracheal instillation or by aerosol inhalation. Environ Res. 1976;11(1):13–33. Epub 1976/02/01. doi: 10.1016/0013-9351(76)90107-9 1253768.
14. Munder A, Krusch S, Tschernig T, Dorsch M, Luhrmann A, van Griensven M, et al. Pulmonary microbial infection in mice: comparison of different application methods and correlation of bacterial numbers and histopathology. Exp Toxicol Pathol. 2002;54(2):127–33. Epub 2002/09/05. doi: 10.1078/0940-2993-00240 12211633
15. Khavkin T, Tabibzadeh SS. Histologic, immunofluorescence, and electron microscopic study of infectious process in mouse lung after intranasal challenge with Coxiella burnetii. Infect Immun. 1988;56(7):1792–9. Epub 1988/07/01. 3290107; PubMed Central PMCID: PMC259479.
16. Kishimoto RA, Burger GT. Appearance of cellular and humoral immunity in guinea pigs after infection with Coxiella burnetii administered in small-particle aerosols. Infect Immun. 1977;16(2):518–21. Epub 1977/05/01. 324911; PubMed Central PMCID: PMC420984.
17. Russell-Lodrigue KE, Zhang GQ, McMurray DN, Samuel JE. Clinical and pathologic changes in a guinea pig aerosol challenge model of acute Q fever. Infect Immun. 2006;74(11):6085–91. Epub 2006/10/24. doi: 10.1128/IAI.00763-06 17057087; PubMed Central PMCID: PMC1695512.
18. Sidwell RW, Thorpe BD, Gebhardt LP. Studies of Latent Q Fever Infections. Ii. Effects of Multiple Cortisone Injections. Am J Hyg. 1964;79:320–7. Epub 1964/05/01. doi: 10.1093/oxfordjournals.aje.a120386 14159951.
19. Baumgartner W, Dettinger H, Schmeer N. Spread and distribution of Coxiella burnetii in C57BL/6J (H-2b) and Balb/cJ (H-2d) mice after intraperitoneal infection. J Comp Pathol. 1993;108(2):165–84. Epub 1993/02/01. doi: 10.1016/s0021-9975(08)80219-8 8473567.
20. Meghari S, Bechah Y, Capo C, Lepidi H, Raoult D, Murray PJ, et al. Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog. 2008;4(2):e23. Epub 2008/02/06. doi: 10.1371/journal.ppat.0040023 18248094; PubMed Central PMCID: PMC2222951.
21. Elliott A, Peng Y, Zhang G. Coxiella burnetii interaction with neutrophils and macrophages in vitro and in SCID mice following aerosol infection. Infect Immun. 2013;81(12):4604–14. Epub 2013/10/02. doi: 10.1128/IAI.00973-13 24082077; PubMed Central PMCID: PMC3837979.
22. Marrie TJ, Stein A, Janigan D, Raoult D. Route of infection determines the clinical manifestations of acute Q fever. J Infect Dis. 1996;173(2):484–7. Epub 1996/02/01. doi: 10.1093/infdis/173.2.484 8568318.
23. Waag DM, Byrne WR, Estep J, Gibbs P, Pitt ML, Banfield CM. Evaluation of cynomolgus (Macaca fascicularis) and rhesus (Macaca mulatta) monkeys as experimental models of acute Q fever after aerosol exposure to phase-I Coxiella burnetii. Lab Anim Sci. 1999;49(6):634–8. Epub 2000/01/19. 10638499.
24. Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, et al. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 2000;55(1):24–35. Epub 2000/05/02. doi: 10.1093/toxsci/55.1.24 10788556.
25. Omsland A, Cockrell DC, Fischer ER, Heinzen RA. Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii. J Bacteriol. 2008;190(9):3203–12. Epub 2008/03/04. doi: 10.1128/JB.01911-07 18310349; PubMed Central PMCID: PMC2347409.
26. Bivas-Benita M, Zwier R, Junginger HE, Borchard G. Non-invasive pulmonary aerosol delivery in mice by the endotracheal route. Eur J Pharm Biopharm. 2005;61(3):214–8. Epub 2005/07/26. doi: 10.1016/j.ejpb.2005.04.009 16039104.
27. Dupont HT, Thirion X, Raoult D. Q fever serology: cutoff determination for microimmunofluorescence. Clin Diagn Lab Immunol. 1994;1(2):189–96. Epub 1994/03/01. 7496944; PubMed Central PMCID: PMC368226.
28. Bewley KR. Animal models of Q fever (Coxiella burnetii). Comp Med. 2013;63(6):469–76. Epub 2013/12/12. 24326221; PubMed Central PMCID: PMC3866982.
29. Norville IH, Hartley MG, Martinez E, Cantet F, Bonazzi M, Atkins TP. Galleria mellonella as an alternative model of Coxiella burnetii infection. Microbiology. 2014;160(Pt 6):1175–81. Epub 2014/03/29. doi: 10.1099/mic.0.077230-0 24677067.
30. Norville IH, Hatch GJ, Bewley KR, Atkinson DJ, Hamblin KA, Blanchard JD, et al. Efficacy of liposome-encapsulated ciprofloxacin in a murine model of Q fever. Antimicrob Agents Chemother. 2014;58(9):5510–8. Epub 2014/07/09. doi: 10.1128/AAC.03443-14 25001305; PubMed Central PMCID: PMC4135868.
31. La Scola B, Lepidi H, Raoult D. Pathologic changes during acute Q fever: influence of the route of infection and inoculum size in infected guinea pigs. Infect Immun. 1997;65(6):2443–7. Epub 1997/06/01. 9169787; PubMed Central PMCID: PMC175339.
32. Wielders CC, Wuister AM, de Visser VL, de Jager-Leclercq MG, Groot CA, Dijkstra F, et al. Characteristics of hospitalized acute Q fever patients during a large epidemic, The Netherlands. PLoS One. 2014;9(3):e91764. Epub 2014/03/13. doi: 10.1371/journal.pone.0091764 24614585; PubMed Central PMCID: PMC3948881.
33. Lee M, Jang JJ, Kim YS, Lee SO, Choi SH, Kim SH, et al. Clinicopathologic features of q Fever patients with acute hepatitis. Korean J Pathol. 2012;46(1):10–4. Epub 2012/10/31. doi: 10.4132/KoreanJPathol.2012.46.1.10 23109972; PubMed Central PMCID: PMC3479695.
34. Eldin C, Melenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, et al. From Q Fever to Coxiella burnetii Infection: a Paradigm Change. Clin Microbiol Rev. 2017;30(1):115–90. Epub 2016/11/20. doi: 10.1128/CMR.00045-16 27856520; PubMed Central PMCID: PMC5217791.
35. Trinchieri G. Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol. 1998;16(3–4):365–96. Epub 1998/03/20. doi: 10.3109/08830189809043002 9505196.
36. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73. Epub 1989/01/01. doi: 10.1146/annurev.iy.07.040189.001045 2523712.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts