#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

3D nanostructural characterisation of grain boundaries in atom probe data utilising machine learning methods


Autoři: Ye Wei aff001;  Zirong Peng aff001;  Markus Kühbach aff001;  Andrew Breen aff002;  Marc Legros aff002;  Melvyn Larranaga aff002;  Frederic Mompiou aff002;  Baptiste Gault aff001
Působiště autorů: Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf, Germany aff001;  CEMES-CNRS, 29 Rue Jeanne-Marvig, Toulouse, France aff002;  Department of Materials, Royal School of Mines, Imperial College, London, England, United Kingdom aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0225041

Souhrn

Boosting is a family of supervised learning algorithm that convert a set of weak learners into a single strong one. It is popular in the field of object tracking, where its main purpose is to extract the position, motion, and trajectory from various features of interest within a sequence of video frames. A scientific application explored in this study is to combine the boosting tracker and the Hough transformation, followed by principal component analysis, to extract the location and trace of grain boundaries within atom probe data. Before the implementation of this method, these information could only be extracted manually, which is time-consuming and error-prone. The effectiveness of this method is demonstrated on an experimental dataset obtained from a pure aluminum bi-crystal and validated on simulated data. The information gained from this method can be combined with crystallographic information directly contained within the data, to fully define the grain boundary character to its 5 degrees of freedom at near-atomic resolution in three dimensions. It also enables local atomic compositional and geometric information, i.e. curvature, to be extracted directly at the interface.

Klíčová slova:

Principal component analysis – Algorithms – Machine learning algorithms – Boosting algorithms – Machine learning – Evaporation – Aluminum – Curvature


Zdroje

1. Gault B, Moody MP, Cairney JM, Ringer SP. Atom probe crystallography. Materials Today. 2012;15(9):378–386. doi: 10.1016/S1369-7021(12)70164-5

2. Larson DJ, Gault B, Geiser BP, De Geuser F, Vurpillot F. Atom probe tomography spatial reconstruction: Status and directions. Current Opinion in Solid State and Materials Science. 2013;17(5):236–247. doi: 10.1016/j.cossms.2013.09.002

3. Waugh AR, Southon MJ. Surface analysis and grain-boundary segregation measurements using atom-probe techniques. Surface Science. 1979;89(1-3):718–724. doi: 10.1016/0039-6028(79)90651-4

4. Norden H, Andren HO. Atom-probe analysis of grain boundary segregation. Surface and Interface Analysis. 1988;12(1-12):179–184. doi: 10.1002/sia.740120302

5. Seto K, Larson DJ, Warren PJ, Smith GDW. Grain boundary segregation in boron added interstitial free steels studied by 3-dimensional atom probe. Scripta Materialia. 1999;40(9):1029–1034. doi: 10.1016/S1359-6462(98)00485-0

6. Kwiatkowski da Silva A, Ponge D, Peng Z, Inden G, Lu Y, Breen A, et al. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nature Communications. 2018;9(1):1137. doi: 10.1038/s41467-018-03591-4 29555984

7. Waugh AR, Boyes ED, Southon MJ. Investigations of field evaporation with field desorption microscope. Surface Science. 1976;61:109–142. doi: 10.1016/0039-6028(76)90411-8

8. Moore A. The structure of atomically smooth spherical surfaces. Journal of Physics and Chemistry of Solids. 1962;23(7):907–912. doi: 10.1016/0022-3697(62)90148-8

9. Vurpillot F, Bostel A, Blavette D. Trajectory overlaps and local magnification in three-dimensional atom probe. Applied Physics Letters. 2000;76(21):3127–3129. doi: 10.1063/1.126545

10. Miller MK. The effects of local magnification and trajectory aberrations on atom probe analysis. Journal De Physique. 1987;48(C-6):565–570.

11. Vurpillot F, Oberdorfer C. Modeling Atom Probe Tomography: A review. Ultramicroscopy. 2015;159:202–216. doi: 10.1016/j.ultramic.2014.12.013 25720335

12. Ge XJ, Chen NX, Zhang WQ, Zhu FW. Selective field evaporation in field-ion microscopy for ordered alloys. Journal of Applied Physics. 1999;85(7):3488–3493. doi: 10.1063/1.369706

13. Moody MP, Tang F, Gault B, Ringer SP, Cairney JM. Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy. 2011;111(6):493–9. doi: 10.1016/j.ultramic.2010.11.014 21146304

14. Yao L, Moody MP, Cairney JM, Haley D, Ceguerra AV, Zhu C, et al. Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. Ultramicroscopy. 2011;111(6):458–463. doi: 10.1016/j.ultramic.2010.11.018 21146305

15. Breen AJ, Babinsky K, Day AC, Eder K, Oakman CJ, Trimby PW, et al. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data. Microsc Microanal. 2017;0:1–12.

16. Yao L, Ringer SP, Cairney JM, Miller MK. The anatomy of grain boundaries: Their structure and atomic-level solute distribution. Scripta Materialia. 2013;69(8):622–625. doi: 10.1016/j.scriptamat.2013.07.013

17. Grabner H, Grabner M, Bischof H. Real-Time Tracking via On-line Boosting. Procedings of the British Machine Vision Conference 2006. 2006;66(648):6.1–6.10.

18. Avidan S. Support Vector Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004;26(8):1064–1072. doi: 10.1109/TPAMI.2004.53 15641735

19. Viola P, Jones MJ, Snow D. Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision. 2005;63(2):153–161. doi: 10.1007/s11263-005-6644-8

20. Freund Y, Schapire RE. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences. 1997;55(1):119–139. https://doi.org/10.1006/jcss.1997.1504.

21. Mompiou F, Caillard D, Legros M. Grain boundary shear-migration coupling-I. In situ TEM straining experiments in Al polycrystals. Acta Materialia. 2009;57(7):2198–2209. doi: 10.1016/j.actamat.2009.01.014

22. Rajabzadeh A, Mompiou F, Lartigue-Korinek S, Combe N, Legros M, Molodov DA. The role of disconnections in deformation-coupled grain boundary migration. Acta Materialia. 2014;77:223–235. doi: 10.1016/j.actamat.2014.05.062

23. Thompson K, Lawrence D, Larson DJ, Olson JD, Kelly TF, Gorman B. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy. 2007;107(2):131–139. https://doi.org/10.1016/j.ultramic.2006.06.008 16938398

24. Burnett TL, Kelley R, Winiarski B, Contreras L, Daly M, Gholinia A, et al. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy. 2016;161:119–129. https://doi.org/10.1016/j.ultramic.2015.11.001 26683814

25. Unocic KA, Mills MJ, Daehn GS. Effect of gallium focused ion beam milling on preparation of aluminium thin foils. Journal of Microscopy. 2010;240(3):227–238. doi: 10.1111/j.1365-2818.2010.03401.x 21077883

26. Gault B, Breen AJ, Chang Y, He J, Jägle EA, Kontis P. Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations. 2018;33(23).

27. Babinsky K, Kloe RD, Clemens H, Primig S. A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy. 2014;144:9–18. https://doi.org/10.1016/j.ultramic.2014.04.003 24815026

28. Gault B, Haley D, de Geuser F, Moody MP, Marquis E, Larson D, et al. Advances in the Reconstruction of Atom Probe Tomography Data. Ultramicroscopy. 2010;111:448–57. doi: 10.1016/j.ultramic.2010.11.016 21146931

29. Randle V, Engler O. Introduction to texture analysis: macrotexture, microtexture and orientation mapping; 2014.

30. Gault B, Moody MP, De Geuser F, Tsafnat G, La Fontaine A, Stephenson LT, et al. Advances in the calibration of atom probe tomographic reconstruction. Journal of Applied Physics. 2009;105(3):034913. doi: 10.1063/1.3068197

31. Oberdorfer C, Eich SM, Schmitz G. A full-scale simulation approach for atom probe tomography. Ultramicroscopy. 2013;128:55–67. doi: 10.1016/j.ultramic.2013.01.005 23500891

32. Oberdorfer C. TAPSim How-to. Institute of Materials Physics, University of Münster; 2014.

33. Oberdorfer C. Numeric Simulation of Atom Probe Tomography. Westfälische Wilhelms-Universität Münster, Münster, Germany; 2014.

34. Kühbach M, Breen A, Herbig M, Gault B. Building a Library of Simulated Atom Probe Data for Different Crystal Structures and Tip Orientations Using TAPSim. Microscopy and Microanalysis. 2019;25(2):320–330. doi: 10.1017/S1431927618016252 30773167

35. Müller EW. Field Desorption. Physical Review. 1956;102(3):618–624. doi: 10.1103/PhysRev.102.618

36. Rosebrock A. Detecting multiple bright spots in an image with Python and OpenCV; 2016. Available from: https://www.pyimagesearch.com/2016/10/31/detecting-multiple-bright-spots-in-an-image-with-python-and-opencv/.

37. Wei Y, Gault B, Varanasi RS, Raabe D, Herbig M, Breen AJ. Machine-learning-based atom probe crystallographic analysis. Ultramicroscopy. 2018;194(June):15–24. doi: 10.1016/j.ultramic.2018.06.017 30036832

38. Itseez. Open Source Computer Vision Library; 2015. https://github.com/itseez/opencv.

39. Duda RO, Hart PE. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun ACM. 1972;15(1):11–15. doi: 10.1145/361237.361242

40. Adams BL, Wright SI, Kunze K. Orientation imaging: The emergence of a new microscopy. Metallurgical Transactions A. 1993;24(4):819–831. doi: 10.1007/BF02656503

41. Araullo-Peters, Vicente J, Breen AJ, Ceguerra AV, Gault B, Ringer SP, et al. A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy. 2015;154:7–14. doi: 10.1016/j.ultramic.2015.02.009

42. S KPFR. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1901;66(2:11):559–572.

43. Felfer P, Ceguerra A, Ringer S, Cairney J. Applying computational geometry techniques for advanced feature analysis in atom probe data. Ultramicroscopy. 2013;132:100–6. doi: 10.1016/j.ultramic.2013.03.004 23623291

44. Bollmann W. Crystal Defects and Crystalline Interfaces; 1970.


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#