Autophagy deficiency exacerbates colitis through excessive oxidative stress and MAPK signaling pathway activation
Autoři:
Minori Kubota aff001; Kazuki Kakimoto aff001; Takatoshi Nakagawa aff002; Eiko Koubayashi aff001; Kei Nakazawa aff001; Hideki Tawa aff001; Yuki Hirata aff001; Toshihiko Okada aff001; Ken Kawakami aff001; Akira Asai aff001; Shuhei Hosomi aff003; Toshihisa Takeuchi aff001; Shinya Fukunishi aff001; Takuya Inoue aff001; Michio Asahi aff002; Kazuhide Higuchi aff001
Působiště autorů:
2nd Department of Internal Medicine, Osaka Medical College, Daigakumachi, Takatsuki, Osaka, Japan
aff001; Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Daigakumachi, Takatsuki, Osaka, Japan
aff002; Department of Gastroenterology, Osaka City University Graduate School of Medicine, Asahimachi, Abeno-ku, Osaka, Japan
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225066
Souhrn
Background and aim
Autophagy is an essential process involved in the pathogenesis of inflammatory bowel disease (IBD). Although there are many data showing the roles of autophagy in intestinal epithelial cells (IECs), the mechanisms involved remain to be fully elucidated. We investigated the influence of autophagy in IECs on gastrointestinal tract inflammation.
Methods
Mice with conditional knockout of Atg5 in IECs (Atg5flox/flox/villin-Cre mice) were subjected to dextran sulfate sodium (DSS)-induced colitis and analyzed for colitis susceptibility. Additionally, we used Atg5-silenced rat IECs (IEC6shAtg5 cells) for in vitro assays.
Results
Sensitivity to DSS markedly increased in Atg5flox/flox/villin-Cre mice compared to that in wild-type mice. In IEC6shAtg5 cells, apoptosis was enhanced, and cell viability significantly decreased compared to IEC-6 cells. The expression of proinflammatory cytokines increased upon suppression of autophagy. Furthermore, silencing of Atg5 was associated with inflammation of IECs, activation of the mitogen-activated protein kinase (MAPK) signaling pathway by the intracellular reactive oxygen species accumulation, and NF-κB p65 phosphorylation.
Conclusions
Autophagy in IECs plays an essential role in the maintenance of intestinal homeostasis, and autophagy deficiency triggers inflammation. Development of methods targeting autophagy might be beneficial in the treatment of IBD.
Klíčová slova:
Cytokines – Autophagic cell death – Gastrointestinal tract – Mouse models – Apoptosis – Inflammatory bowel disease – MAPK signaling cascades – Colitis
Zdroje
1. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207–11. doi: 10.1038/ng1954 17200669.
2. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet. 2007;39(7):830–2. doi: 10.1038/ng2061 17554261; PubMed Central PMCID: PMC2628541.
3. Prescott NJ, Fisher SA, Franke A, Hampe J, Onnie CM, Soars D, et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn's disease and is independent of CARD15 and IBD5. Gastroenterology. 2007;132(5):1665–71. doi: 10.1053/j.gastro.2007.03.034 17484864.
4. Deretic V, Master S, Singh S. Autophagy gives a nod and a wink to the inflammasome and Paneth cells in Crohn's disease. Dev Cell. 2008;15(5):641–2. doi: 10.1016/j.devcel.2008.10.009 19000829; PubMed Central PMCID: PMC3725296.
5. Yano T, Kurata S. An unexpected twist for autophagy in Crohn's disease. Nat Immunol. 2009;10(2):134–6. doi: 10.1038/ni0209-134 19148195.
6. Conway KL, Kuballa P, Song JH, Patel KK, Castoreno AB, Yilmaz OH, et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology. 2013;145(6):1347–57. doi: 10.1053/j.gastro.2013.08.035 23973919; PubMed Central PMCID: PMC3840157.
7. Asano J, Sato T, Ichinose S, Kajita M, Onai N, Shimizu S, et al. Intrinsic Autophagy Is Required for the Maintenance of Intestinal Stem Cells and for Irradiation-Induced Intestinal Regeneration. Cell Rep. 2017;20(5):1050–60. doi: 10.1016/j.celrep.2017.07.019 28768191.
8. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456(7219):259–63. doi: 10.1038/nature07416 18849966; PubMed Central PMCID: PMC2695978.
9. Harada S, Nakagawa T, Yokoe S, Edogawa S, Takeuchi T, Inoue T, et al. Autophagy Deficiency Diminishes Indomethacin-Induced Intestinal Epithelial Cell Damage through Activation of the ERK/Nrf2/HO-1 Pathway. J Pharmacol Exp Ther. 2015;355(3):353–61. doi: 10.1124/jpet.115.226431 26404472.
10. Hausmann M, Obermeier F, Paper DH, Balan K, Dunger N, Menzel K, et al. In vivo treatment with the herbal phenylethanoid acteoside ameliorates intestinal inflammation in dextran sulphate sodium-induced colitis. Clin Exp Immunol. 2007;148(2):373–81. doi: 10.1111/j.1365-2249.2007.03350.x 17437425; PubMed Central PMCID: PMC1868873.
11. Hirata Y, Nakagawa T, Moriwaki K, Koubayashi E, Kakimoto K, Takeuchi T, et al. Augmented O-GlcNAcylation alleviates inflammation-mediated colon carcinogenesis via suppression of acute inflammation. J Clin Biochem Nutr. 2018;62(3):221–9. doi: 10.3164/jcbn.17-106 29892160; PubMed Central PMCID: PMC5990405.
12. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34. doi: 10.1083/jcb.200412022 15866887; PubMed Central PMCID: PMC2171928.
13. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604. doi: 10.1038/ng2032 17435756; PubMed Central PMCID: PMC2757939.
14. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. doi: 10.1038/nature11582 23128233; PubMed Central PMCID: PMC3491803.
15. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86. doi: 10.1038/ng.3359 26192919; PubMed Central PMCID: PMC4881818.
16. Cadwell K, Patel KK, Komatsu M, Virgin HWt, Stappenbeck TS. A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy. 2009;5(2):250–2. doi: 10.4161/auto.5.2.7560 19139628; PubMed Central PMCID: PMC2940227.
17. Cabrera S, Fernandez AF, Marino G, Aguirre A, Suarez MF, Espanol Y, et al. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy. 2013;9(8):1188–200. doi: 10.4161/auto.24797 23782979; PubMed Central PMCID: PMC3748191.
18. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005;25(3):1025–40. doi: 10.1128/MCB.25.3.1025-1040.2005 15657430; PubMed Central PMCID: PMC543994.
19. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39. doi: 10.1016/j.cell.2005.07.002 16179260.
20. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997;275(5296):90–4. doi: 10.1126/science.275.5296.90 8974401.
21. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000;288(5467):870–4. doi: 10.1126/science.288.5467.870 10797012.
22. Ura S, Nishina H, Gotoh Y, Katada T. Activation of the c-Jun N-terminal kinase pathway by MST1 is essential and sufficient for the induction of chromatin condensation during apoptosis. Mol Cell Biol. 2007;27(15):5514–22. doi: 10.1128/MCB.00199-07 17548476; PubMed Central PMCID: PMC1952095.
23. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol. 2008;10(11):1324–32. doi: 10.1038/ncb1791 18836437.
24. Zeissig S, Bojarski C, Buergel N, Mankertz J, Zeitz M, Fromm M, et al. Downregulation of epithelial apoptosis and barrier repair in active Crohn's disease by tumour necrosis factor alpha antibody treatment. Gut. 2004;53(9):1295–302. doi: 10.1136/gut.2003.036632 15306588; PubMed Central PMCID: PMC1774168.
25. Schulzke JD, Bojarski C, Zeissig S, Heller F, Gitter AH, Fromm M. Disrupted barrier function through epithelial cell apoptosis. Ann N Y Acad Sci. 2006;1072:288–99. doi: 10.1196/annals.1326.027 17057208.
26. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131(1):33–45. doi: 10.1016/j.cell.2007.08.017 17923086; PubMed Central PMCID: PMC2169385.
27. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446(7135):557–61. doi: 10.1038/nature05698 17361131.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF