Reproducible phenotype alteration due to prolonged cooling of the pupae of Polyommatus icarus butterflies
Autoři:
Gábor Piszter aff001; Krisztián Kertész aff001; Zsolt Endre Horváth aff001; Zsolt Bálint aff002; László Péter Biró aff001
Působiště autorů:
Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
aff001; Hungarian Natural History Museum, Budapest, Hungary
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225388
Souhrn
The phenotypic changes induced by prolonged cooling (2–12 weeks at 5 °C in the dark) of freshly formed Polyommatus icarus pupae were investigated. Cooling halted the imaginal development of pupae collected shortly after transformation from the larval stage. After cooling, the pupae were allowed to continue their developmental cycle. The wings of the eclosed specimens were investigated by optical microscopy, scanning and cross-sectional transmission electron microscopy, UV-VIS spectroscopy and microspectroscopy. The eclosed adults presented phenotypic alterations that reproduced results that we published previously for smaller groups of individuals remarkably well; these changes included i) a linear increase in the magnitude of quantified deviation from normal ventral wing patterns with increasing cooling time; ii) slight alteration of the blue coloration of males; and iii) an increasing number of blue scales on the dorsal wing surface of females with increasing cooling time. Several independent factors, including disordering of regular scale rows in males, the number of blue scales in females, eclosion probability and the probability of defect-free eclosion, showed that the cooling time can be divided into three periods: 0–4 weeks, 4–8 weeks, and 8–12 weeks, each of which is characterized by specific changes. The shift from brown female scales to first blue scales with a female-specific shape and then to blue scales with a male-specific shape with longer cooling times suggests slow decomposition of a substance governing scale formation.
Klíčová slova:
Phenotypes – Hormones – Light – Larvae – Scanning electron microscopy – Pupae – Moths and butterflies
Zdroje
1. Pirih N, Kunej T, An updated taxonomy and a graphical summary tool for optimal classification and comprehension of omics research. Omi. A J. Integr. Biol. 2018;22: 337–353.
2. Houle D, Govindaraju DR, Omholt S, Phenomics: the next challenge. Nat. Rev. Genet. 2010;11: 855–866. doi: 10.1038/nrg2897 21085204
3. Rimm DL, C-path: a Watson-like visit to the pathology lab. Sci. Transl. Med. 2011;3: 108fs8. doi: 10.1126/scitranslmed.3003252 22072635
4. Bilder RM, Sabb FW, Cannon TD, London ED, Jentsch JD, Parker DS, et al. Phenomics: the systematic study of phenotypes on a genome-wide scale. Neuroscience 2009;164: 30–42. doi: 10.1016/j.neuroscience.2009.01.027 19344640
5. Fahlgren N, Gehan MA, Baxter I, Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015;24: 93–99. doi: 10.1016/j.pbi.2015.02.006 25733069
6. Furbank RT, Tester M, Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16: 635–644. doi: 10.1016/j.tplants.2011.09.005 22074787
7. Jerome C, Simpson JS, Increasing demands and vanishing expertise in insect integrative biology. In: Casa J., Simpson J. S., editors. Advances in insect physiology, insect integument and color, Vol. 38 London: Academic Press; 2010. pp. 1–5.
8. Yang CH, Pospisilik AJ, Polyphenism–A Window Into Gene-Environment Interactions and Phenotypic Plasticity. Front. Genet. 2019;10: 132. doi: 10.3389/fgene.2019.00132 30863426
9. West-Eberhard MJ, Phenotypic Plasticity and the Origins of Diversity. Annu. Rev. Ecol. Syst. 1989;20: 249–278.
10. van Bergen E, Osbaldeston D, Kodandaramaiah U, Brattström O, Aduse-Poku K, Brakefield PM, Conserved patterns of integrated developmental plasticity in a group of polyphenic tropical butterflies. BMC Evol. Biol. 2017;17: 59. doi: 10.1186/s12862-017-0907-1 28241743
11. Nijhout HF, Control mechanisms of polyphenic development in insects. Bioscience 1999;49: 181–192.
12. Otaki JM, Yamamoto H, Species-specific color-pattern modifications of butterfly wings. Dev. Growth Differ. 2004;46: 1–14. doi: 10.1111/j.1440-169x.2004.00721.x 15008850
13. Otaki JM, Physiologically induced color-pattern changes in butterfly wings: Mechanistic and evolutionary implications. J. Insect Physiol. 2008;54: 1099–1112. doi: 10.1016/j.jinsphys.2008.05.006 18638480
14. Kertész K, Piszter G, Horváth ZE, Bálint Z, Biró LP, Changes in structural and pigmentary colours in response to cold stress in Polyommatus icarus butterflies. Sci. Rep. 2017;7: 1118. doi: 10.1038/s41598-017-01273-7 28442788
15. Suzuki Y, Nijhout HF, Evolution of a polyphenism by genetic accommodation. Science 2006;311: 650–652. doi: 10.1126/science.1118888 16456077
16. Paaby AB, Rockman MV, Cryptic genetic variation: evolution’s hidden substrate. Nat. Rev. Genet. 2014;15: 247–258. doi: 10.1038/nrg3688 24614309
17. Biró LP, Vigneron JP, Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser Photon. Rev. 2011;5: 27–51.
18. Ghiradella H, Development of ultraviolet-reflecting butterfly scales: How to make an interference filter. J. Morphol. 1974;142: 395–409. doi: 10.1002/jmor.1051420404 30314406
19. Ghiradella H, Structure of butterfly scales: Patterning in an insect cuticle. Microsc. Res. Tech. 1994;27: 429–438. doi: 10.1002/jemt.1070270509 8018995
20. Dinwiddie A, Null R, Pizzano M, Chuong L, Leigh Krup A, Ee Tan H, et al. Dynamics of F-actin prefigure the structure of butterfly wing scales. Dev. Biol. 2014;392: 404–418. doi: 10.1016/j.ydbio.2014.06.005 24930704
21. Ohno Y, Otaki JM, Live cell imaging of butterfly pupal and larval wings in vivo. PLoS One 2015;10: e0128332. doi: 10.1371/journal.pone.0128332 26107809
22. Zhang L, Mazo-Vargas A, Reed RD, Genetic basis of butterfly color and iridescence, Proc. Nat. Acad. Sci. 2017;114: 10707–10712.
23. Bálint Z, Kertész K, Piszter G, Vértesy Z, Biró LP, The well-tuned Blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae). J. R. Soc. Interface 2012;9: 1745–1756. doi: 10.1098/rsif.2011.0854 22319114
24. Lewontin R, The genetic basis of evolutionary change. New York: Columbia University Press; 1974.
25. Piszter G, Kertész K, Bálint Z, Biró LP, Variability of the structural coloration in two butterfly species with different prezygotic mating strategies. PLoS One 2016;11: e0165857. doi: 10.1371/journal.pone.0165857 27832120
26. Davidowitz G, Roff D, Nijhout HF, Synergism and antagonism of proximate mechanisms enable and constrain the response to simultaneous selection on body size and development time: an empirical test using experimental evolution. Am. Nat. 2016;188: 499–520. doi: 10.1086/688653 27788344
27. BioPhot Analyzer 2.0 product website [cited 30 September 2019]. In: SoftAdmin website [Internet]. https://softadmin.ro/biophot/index.php
28. Kertész K, Piszter G, Jakab E, Bálint Z, Vértesy Z, Biró LP, Temperature and saturation dependence in the vapor sensing of butterfly wing scales. Mat. Sci. Eng. C 2014;39: 221–226.
29. Nijhout HF, Molecular and physiological basis of colour pattern formation. In: Casa J., Simpson J. S., editors. Advances in insect physiology, insect integument and color, Vol. 38 pp. 249. London: Academic Press; 2010.
30. Simpson SJ, Sword GA, Lo N, Polyphenism in insects. Curr. Biol. 2011;21: R738–R749. doi: 10.1016/j.cub.2011.06.006 21959164
31. Nijhout HF, Development and evolution of adaptive polyphenisms. Evol. Dev. 2003;5: 9–18. doi: 10.1046/j.1525-142x.2003.03003.x 12492404
32. Nijhout HF, Control mechanisms of polyphenic development in insects. Bioscience 1999;49: 181–192.
33. Brisson JA, Davis GK, The right tools for the job: regulating polyphenic morph development in insects. Curr. Opin. Insect Sci. 2016;13: 1–6. doi: 10.1016/j.cois.2015.09.011 26693142
34. Nygren GH, Bergström A, Nylin S, Latitudinal body size clines in the butterfly Polyommatus icarus are shaped by gene-environment interactions. J. Insect Sci. 2008;8: 1–13.
35. Michielsen K, Stavenga DG, Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. J. R. Soc. Interface 2008;5: 85–94. doi: 10.1098/rsif.2007.1065 17567555
36. Saranathan V, Osuji CO, Mochrie SGJ, Noh H, Narayanan S, Sandy A, et al. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl. Acad. Sci. USA 2010;107: 11676–11681. doi: 10.1073/pnas.0909616107 20547870
37. Wilts BD, Zubiri BA, Klatt MA, Butz B, Fischer MG, Kelly ST, et al. Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. Sci. Adv. 2017;4: e1603119.
38. Greenstein ME, The ultrastructure of developing wings in the giant silkmoth, Hyalophora cecropia. II. Scale-forming and socket-forming cells. J. Morphol. 1972;136: 23–51. doi: 10.1002/jmor.1051360103 5009131
39. Iwata M, Ohno Y, Otaki JM, Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue. PLoS ONE, 2014;9: e89500. doi: 10.1371/journal.pone.0089500 24586829
40. Greenstein ME, The ultrastructure of developing wings in the giant silkmoth, Hyalophora cecropia. II. Scale-forming and socket-forming cells. J. Morphol. 1972;136: 23–51. doi: 10.1002/jmor.1051360103 5009131
41. Yoshida A, Aoki K, Scale arrangement pattern in a lepidopteran wing. 1. periodic cellular pattern in the pupal wing of Pieris rapae. Dev. Growth Differ. 1989;31: 601–609.
42. Kertész K, Piszter G, Bálint Z, Biró LP, Biogeographical patterns in the structural blue of male Polyommatus icarus butterflies. Sci. Rep., 2019;9: 2338. doi: 10.1038/s41598-019-38827-w 30787341
43. Wilts BD, Leertouwer HL, Stavenga DG, Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. J. R. Soc. Interface. 2009;6 Suppl 2: S185–S192.
44. Kertész K, Molnár G, Vértesy Z, Koós AA, Horváth ZE, Márk GI, et al. Photonic band gap materials in butterfly scales: A possible source of “blueprints”. Mat. Sci. Eng. B 2008;149: 259–265.
45. Suszczynska A, Kaniewska MM, Bebas P, Giebultowicz JM, Kotwica-Rolinska J, Circadian regulation of caterpillar feeding and growth. J. Insect Phys. 2017;101: 113–122.
46. Steel CGH, Vafopoulou X, Circadian orchestration of developmental hormones in the insect, Rhodnius prolixus. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 2006;144: 351–364.
47. Rountree DB, Nijhout HF, Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). Journal of Insect Physiology, 1995;41: 987–992.
48. Zitnan D, Adams ME, Neuroendocrine regulation of ecdysis. In: Gilber L. I. editor. Insect Endocrinology, pp. 253–309. London: Academic Press; 2012.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF