#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Size matters: How reaching and vergence movements are influenced by the familiar size of stereoscopically presented objects


Autoři: Rebekka S. Schubert aff001;  Maarten L. Jung aff001;  Jens R. Helmert aff001;  Boris M. Velichkovsky aff001;  Sebastian Pannasch aff001
Působiště autorů: Faculty of Psychology, Technische Universität Dresden, Dresden, Germany aff001;  National Research Center “Kurchatov Institute”, Moscow, Russian Federation aff002;  Moscow Institute for Physics and Technology, Moscow, Russian Federation aff003;  Russian State University for the Humanities, Moscow, Russian Federation aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0225311

Souhrn

The knowledge about the usual size of objects—familiar size—is known to be a taken into account for distance perception. The influence of familiar size on action programming is less clear and has not yet been tested with regard to vergence eye movements. In two experiments, we stereoscopically presented everyday objects, such as a credit card or a package of paper tissues, and varied the distance as specified by binocular disparity and the distance as specified by familiar size. Participants had to fixate the shown object and subsequently reach towards it either with open or with closed eyes. When binocular disparity and familiar size were in conflict, reaching movements revealed a combination of the two depth cues with individually different weights. The influence of familiar size was larger when no visual feedback was available during the reaching movement. Vergence movements closely followed binocular disparity and were largely unaffected by familiar size. In sum, the results suggest that in this experimental setting familiar size is taken into account for programming and executing reaching movements while vergence movements are primarily based on binocular disparity.

Klíčová slova:

Eyes – Sensory perception – Vision – Eye movements – Luminance – Pupil – Long term memory – Blindness


Zdroje

1. Ono H. Apparent distance as a function of familiar size. Journal of Experimental Psychology. 1969;79(1, Pt.1):109–15. doi: 10.1037/h0026879 5785624

2. O’leary A, Wallach H. Familiar size and linear perspective as distance cues in stereoscopic depth constancy. Percept Psychophys. 1980;27(2):131–5. doi: 10.3758/bf03204300

3. Gogel WC. The effect of object familiarity on the perception of size and distance. Q J Exp Psychol. 1969;21(3):239–47. doi: 10.1080/14640746908400218 5347010

4. Holway AH, Boring EG. Determinants of apparent visual size with distance variant. The American Journal of Psychology. 1941;54(1):21–37. doi: 10.2307/1417790

5. Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends in Neurosciences. 1992;15(1):20–5. doi: 10.1016/0166-2236(92)90344-8 1374953

6. Milner AD, Goodale MA. Two visual systems re-viewed. Neuropsychologia. 2008;46(3):774–85. doi: 10.1016/j.neuropsychologia.2007.10.005 18037456

7. Marotta JJ, Goodale MA. The role of familiar size in the control of grasping. Journal of Cognitive Neuroscience. 2001;13(1):8–17. doi: 10.1162/089892901564135 11224905

8. McIntosh RD, Lashley G. Matching boxes: Familiar size influences action programming. Neuropsychologia. 2008;46(9):2441–4. doi: 10.1016/j.neuropsychologia.2008.03.003 18407302

9. Borchers S, Himmelbach M. The recognition of everyday objects changes grasp scaling. Vision Research. 2012;67:8–13. doi: 10.1016/j.visres.2012.06.019 22772030

10. Christensen A, Borchers S, Himmelbach M. Effects of pictorial cues on reaching depend on the distinctiveness of target objects. PLoS ONE. 2013;8(1):e54230. doi: 10.1371/journal.pone.0054230 23382882

11. Haffenden AM, Goodale MA. Learned perceptual associations influence visuomotor programming under limited conditions: kinematic consistency. Experimental Brain Research. 2002;147(4):485–93. doi: 10.1007/s00221-002-1250-2 12444480

12. Haffenden AM, Goodale MA. Learned perceptual associations influence visuomotor programming under limited conditions: cues as surface patterns. Experimental Brain Research. 2002;147(4):473–84. doi: 10.1007/s00221-002-1249-8 12444479

13. Haffenden AM, Goodale MA. The effect of learned perceptual associations on visuomotor programming varies with kinematic demands. Journal of Cognitive Neuroscience. 2000;12(6):950–64. doi: 10.1162/08989290051137495 11177416

14. Borchers S, Christensen A, Ziegler L, Himmelbach M. Visual action control does not rely on strangers—Effects of pictorial cues under monocular and binocular vision. Neuropsychologia. 2011;49(3):556–63. doi: 10.1016/j.neuropsychologia.2010.12.018 21168426

15. Keefe BD, Watt SJ. The role of binocular vision in grasping: a small stimulus-set distorts results. Experimental Brain Research. 2009;194(3):435–44. doi: 10.1007/s00221-009-1718-4 19198815

16. Sousa R, Brenner E, Smeets JBJ. Judging an unfamiliar object’s distance from its retinal image size. Journal of Vision. 2011;11(9). doi: 10.1167/11.9.10 21859822

17. Sousa R, Smeets JBJ, Brenner E. The effect of variability in other objects’ sizes on the extent to which people rely on retinal image size as a cue for judging distance. Journal of Vision. 2012;12(10):6: 1–8. doi: 10.1167/12.10.6 22976399

18. Sousa R, Smeets JBJ, Brenner E. The influence of previously seen objects’ sizes in distance judgments. Journal of Vision. 2013;13(2). doi: 10.1167/13.2.2 23378131

19. Schubert RS, Müller M, Pannasch S, Helmert JR. Depth information from binocular disparity and familiar size is combined when reaching towards virtual objects. Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. New York, NY, USA: ACM; 2016. p. 233–6.

20. Goodale MA, Cant JS, Króliczak G. Grasping the past and present: When does visuomotor priming occur. In: Ögmen H, Breitmeyer BG, editors. The first half second: The microgenesis and temporal dynamics of unconscious and conscious visual processes. Cambridge, MA: MIT Press; 2006. p. 51–72.

21. Neely KA, Tessmer A, Binsted G, Heath M. Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues. Experimental Brain Research. 2008;186(3):375–84. doi: 10.1007/s00221-007-1238-z 18087697

22. Cutting JE, Vishton PM. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In: Epstein W, Rogers SJ, editors. Handbook of perception and cognition, Vol 5; Perception of space and motion. San Diego, CA: Academic Press; 1995. p. 69–117.

23. Erkelens CJ. A dual visual–local feedback model of the vergence eye movement system. Journal of Vision. 2011;11(10):21. doi: 10.1167/11.10.21 21954299

24. Chen Y-F, Lee Y-Y, Chen T, Semmlow JL, Alvarez TL. Review: Behaviors, models, and clinical applications of vergence eye movements. Journal of Medical and Biological Engineering. 2010;30(1):1–15.

25. Erkelens CJ, Van der Steen J, Steinman R, Collewijn H. Ocular vergence under natural conditions. I. Continuous changes of target distance along the median plane. Proceedings of the Royal Society of London B: Biological Sciences. 1989;236(1285):417–40. doi: 10.1098/rspb.1989.0030 2567519

26. Erkelens CJ, Regan D. Human ocular vergence movements induced by changing size and disparity. The Journal of Physiology. 1986;379(1):145–69. doi: 10.1113/jphysiol.1986.sp016245 3559991

27. Enright JT. Perspective vergence: oculomotor responses to line drawings. Vision Research. 1987;27(9):1513–26. doi: 10.1016/0042-6989(87)90160-x 3445485

28. Frey J, Ringach DL. Binocular eye movements evoked by self-induced motion parallax. The Journal of Neuroscience. 2011;31(47):17069–73. doi: 10.1523/JNEUROSCI.2192-11.2011 22114276

29. Ringach DL, Hawken MJ, Shapley R. Binocular eye movements caused by the perception of three-Dimensional structure from motion. Vision Research. 1996;36(10):1479–92. doi: 10.1016/0042-6989(95)00285-5 8762765

30. González EG, Allison RS, Ono H, Vinnikov M. Cue conflict between disparity change and looming in the perception of motion in depth. Vision Research. 2010;50(2):136–43. doi: 10.1016/j.visres.2009.11.005 19909770

31. Wismeijer DA, Erkelens CJ, van Ee R, Wexler M. Depth cue combination in spontaneous eye movements. Journal of Vision. 2010;10(6):25. doi: 10.1167/10.6.25 20884574

32. Wismeijer DA, Erkelens CJ. The effect of changing size on vergence is mediated by changing disparity. Journal of Vision. 2009;9(13):12-. doi: 10.1167/9.13.12 20055545

33. Iijima A, Kiryu T, Ukai K, Bando T. Vergence eye movements elicited by non-disparity factors in 2D realistic movies. Proceedings of The First International Symposium on Visually Induced Motion Sickness, Fatigue, and Photosensitive Epileptic Seizures (VIMS 2007)2007. p. 59–66.

34. Hoffmann J, Sebald A. Eye vergence is susceptible to the hollow-face illusion. Perception. 2007;36(3):461. doi: 10.1068/p5549 17455759

35. Grosjean M, Rinkenauer G, Jainta S. Where do the eyes really go in the hollow-face illusion? PloS one. 2012;7(9):e44706. doi: 10.1371/journal.pone.0044706 22962623

36. Sheliga B, Miles F. Perception can influence the vergence responses associated with open-loop gaze shifts in 3D. Journal of Vision. 2003;3(11):2. doi: 10.1167/3.11.2 14765951

37. Wagner M, Ehrenstein WH, Papathomas TV. Vergence in reverspective: Percept-driven versus data-driven eye movement control. Neuroscience Letters. 2009;449(2):142–6. doi: 10.1016/j.neulet.2008.10.093 18996440

38. Wismeijer DA, van Ee R, Erkelens CJ. Depth cues, rather than perceived depth, govern vergence. Experimental Brain Research. 2008;184(1):61–70. doi: 10.1007/s00221-007-1081-2 17717656

39. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4 5146491

40. Bach M. The Freiburg Visual Acuity Test-variability unchanged by post-hoc re-analysis. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2006;245(7):965–71. doi: 10.1007/s00417-006-0474-4 17219125

41. Stilling J, Hertel E, Velhagen K. Tafeln zur Prüfung des Farbensinnes. 34 ed. Stuttgart: Thieme; 2011.

42. Renner RS, Velichkovsky BM, Helmert JR, Stelzer RH. Measuring interpupillary distance might not be enough. Proceedings of the ACM Symposium on Applied Perception. New York, USA: ACM; 2013. p. 130.

43. Renner RS, Steindecker E, Müller M, Velichkovsky BM, Stelzer R, Pannasch S, et al. The influence of the stereo base on blind and sighted reaches in a virtual environment. ACM Transactions on Applied Perception. 2015;12(2):7:1–7:18. doi: 10.1145/2724716

44. Schubert RS, Hartwig J, Müller M, Groh R, Pannasch S. Are age differences missing in relative and absolute distance perception of stereoscopically presented virtual objects? Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology: ACM; 2016. p. 307–8.

45. Limesurvey GmbH. LimeSurvey: An Open Source survey tool. Hamburg, Germany: LimeSurvey GmbH; 2012.

46. IBM Corp. IBM SPSS Statistics for Windows. 20 ed. Armonk, NY: IBM Corp.; 2011.

47. R Core Team. R: A Language and Environment for Statistical Computing. 3.5.0 ed. Vienna, Austria: R Foundation for Statistical Computing; 2018.

48. Weber S, Schubert RS, Vogt S, Velichkovsky BM, Pannasch S. Gaze3DFix: Detecting 3D fixations with an ellipsoidal bounding volume. Behavior Research Methods. 2017:1–12.

49. Zeileis A, Grothendieck G. zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software. 2005;14(6):1–27. doi: 10.18637/jss.v014.i06

50. Jainta S, Hoormann J, Jaschinski W. Objective and subjective measures of vergence step responses. Vision Research. 2007;47(26):3238–46. doi: 10.1016/j.visres.2007.05.006 17959213

51. Rambold H, Sprenger A, Helmchen C. Effects of voluntary blinks on saccades, vergence eye movements, and saccade-vergence interactions in humans. Journal of Neurophysiology. 2002;88(3):1220–33. doi: 10.1152/jn.2002.88.3.1220 12205143.

52. Baayen H, Davidson DJ, Bates DM. Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language. 2008;59(4):390–412. doi: 10.1016/j.jml.2007.12.005

53. Barr DJ, Levy R, Scheepers C, Tily HJ. Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language. 2013;68(3):255–78. doi: 10.1016/j.jml.2012.11.001 24403724

54. Schielzeth H, Forstmeier W. Conclusions beyond support: overconfident estimates in mixed models. Behavioral Ecology. 2008;20(2):416–20. doi: 10.1093/beheco/arn145 19461866

55. Bates D, Kliegl R, Vasishth S, Baayen H. Parsimonious mixed models. arXiv preprint arXiv:150604967. 2015.

56. Singmann H, Bolker B, Westfall J, Aust F. afex: Analysis of Factorial Experiments. 0.22–1 ed2018.

57. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:14065823. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01

58. Baayen H, Bates D, Kliegl R, Vasishth S. RePsychLing: Data sets from Psychology and Linguistics experiments. 0.0.4 ed2015.

59. Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D. Balancing Type I error and power in linear mixed models. Journal of Memory and Language. 2017;94:305–15. doi: 10.1016/j.jml.2017.01.001

60. Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53(3):983. doi: 10.2307/2533558 9333350

61. Luke SG. Evaluating significance in linear mixed-effects models in R. Behavior Research Methods. 2017;49(4):1494–502. doi: 10.3758/s13428-016-0809-y 27620283

62. Jaeger B. r2glmm: Computes R Squared for Mixed (Multilevel) Models. 2017.

63. Barton K. MuMIn: Multi-Model Inference. 1.40.4 ed2018.

64. Johnson PCD. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods in Ecology and Evolution. 2014;5(9):944–6. doi: 10.1111/2041-210X.12225 25810896

65. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution. 2012;4(2):133–42. doi: 10.1111/j.2041-210x.2012.00261.x

66. Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. 1.2.1 ed2018.

67. Bakdash JZ, Marusich LR. Repeated measures correlation. Frontiers in psychology. 2017;8:456. doi: 10.3389/fpsyg.2017.00456 28439244

68. Wickham H. ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag New York; 2009.

69. Morey RD. Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology. 2008;4(2):61–4. doi: 10.20982/tqmp.04.2.p061

70. Lin CJ, Widyaningrum R. The effect of parallax on eye fixation parameter in projection-based stereoscopic displays. Applied Ergonomics. 2018;69:10–6. doi: 10.1016/j.apergo.2017.12.020 29477316

71. Jaschinski W, Jainta S, Hoormann J. Comparison of shutter glasses and mirror stereoscope for measuring dynamic and static vergence. Journal of Eye Movement Research. 2008;1(2):5: 1–7. doi: 10.16910/jemr.1.2.5

72. Erkelens IM, Bobier WR. Adaptation of reflexive fusional vergence is directionally biased. Vision Research. 2018;149:66–76. doi: 10.1016/j.visres.2018.06.006 29940192

73. Švede A, Treija E, Jaschinski W, Krūmiņa G. Monocular versus binocular calibrations in evaluating fixation disparity with a video-based eye-tracker. Perception. 2015;44(8–9):1110–28. doi: 10.1177/0301006615596886 26562925

74. Liversedge SP, Rayner K, White SJ, Findlay JM, McSorley E. Binocular coordination of the eyes during reading. Curr Biol. 2006;16(17):1726–9. doi: 10.1016/j.cub.2006.07.051 16950110

75. Nuthmann A, Kliegl R. An examination of binocular reading fixations based on sentence corpus data. Journal of Vision. 2009;9(5):31-. doi: 10.1167/9.5.31 19757909

76. Hooge ITC, Hessels RS, Nyström M. Do pupil-based binocular video eye trackers reliably measure vergence? Vision Research. 2019;156:1–9. doi: 10.1016/j.visres.2019.01.004 30641092

77. Green P, MacLeod CJ. SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution. 2016;7(4):493–8. doi: 10.1111/2041-210x.12504

78. Schubert RS, Jung ML, Helmert JR, Velichkovsky BM, Pannasch S. Size Matters—Data and Analyses. Open Science Framework2019.

79. Woldegiorgis BH, Lin CJ. The accuracy of distance perception in the frontal plane of projection-based stereoscopic environments. Journal of the Society for Information Display. 2017;25(12):701–11. doi: 10.1002/jsid.618

80. Heath M, Westwood DA, Binsted G. The control of memory-guided reaching movements in peripersonal space. Motor Control. 2004;8(1):76–106. doi: 10.1123/mcj.8.1.76 14973339

81. Westwood DA, Heath M, Roy EA. The accuracy of reaching movements in brief delay conditions. Canadian Journal of Experimental Psychology. 2001;55(4):304. doi: 10.1037/h0087377 11768855

82. Westwood DA, Heath M, Roy EA. No evidence for accurate visuomotor memory: Systematic and variable error in memory-guided reaching. Journal of motor behavior. 2003;35(2):127–33. doi: 10.1080/00222890309602128 12711584

83. Kopiske KK, Bozzacchi C, Volcic R, Domini F. Multiple distance cues do not prevent systematic biases in reach to grasp movements. Psychological Research. 2018;83(1):147–58. doi: 10.1007/s00426-018-1101-9 30259095

84. Campagnoli C, Croom S, Domini F. Stereovision for action reflects our perceptual experience of distance and depth. Journal of Vision. 2017;17(9):21-. doi: 10.1167/17.9.21 28837967

85. Foley JM. Binocular distance perception. Psychological Review. 1980;87(5):411–34. doi: 10.1037/0033-295x.87.5.411 1980-31699-001. PsycARTICLES Identifier: rev-87-5-411. 7413886. First Author & Affiliation: Foley, John M. 7413886

86. Woodworth RS. Accuracy of voluntary movement. The Psychological Review: Monograph Supplements. 1899;3(3):i–114. doi: 10.1037/h0092992

87. Elliott D, Hansen S, Grierson LE, Lyons J, Bennett SJ, Hayes SJ. Goal-directed aiming: two components but multiple processes. Psychological Bulletin. 2010;136(6):1023. doi: 10.1037/a0020958 20822209

88. Ebrahimi E, Babu SV, Pagano CC, Jörg S. An empirical evaluation of visuo-haptic feedback on physical reaching behaviors during 3D interaction in real and immersive virtual environments. ACM Transactions on Applied Perception. 2016;13(4):1–21. doi: 10.1145/2947617

89. Bozzacchi C, Domini F. Lack of depth constancy for grasping movements in both virtual and real environments. Journal of Neurophysiology. 2015;114(4):2242–8. doi: 10.1152/jn.00350.2015 26269553

90. Proffitt DR, Caudek C. Depth perception and the perception of events. In: Healy AF, Proctor RW, editors. Handbook of psychology: Vol4 Experimental psychology. New York: Wiley; 2002. p. 213–36.

91. Yarbus AL. Eye movements and vision. New York: Plenum Press; 1967.

92. Semmlow J, Hung GK, Ciuffreda KJ. Quantitative assessment of disparity vergence components. Investigative Ophthalmology & Visual Science. 1986;27(4):558–64.

93. Neveu P, Priot A-E, Philippe M, Fuchs P, Roumes C. Agreement between clinical and laboratory methods assessing tonic and cross-link components of accommodation and vergence. Clinical and Experimental Optometry. 2015;98(5):435–46. doi: 10.1111/cxo.12311 26390906


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#