Protein synthesis rates of muscle, tendon, ligament, cartilage, and bone tissue in vivo in humans
Autoři:
Joey S. J. Smeets aff001; Astrid M. H. Horstman aff001; Georges F. Vles aff002; Pieter J. Emans aff002; Joy P. B. Goessens aff001; Annemie P. Gijsen aff001; Janneau M. X. van Kranenburg aff001; Luc J. C. van Loon aff001
Působiště autorů:
Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
aff001; Department of Orthopedic Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224745
Souhrn
Skeletal muscle plasticity is reflected by a dynamic balance between protein synthesis and breakdown, with basal muscle tissue protein synthesis rates ranging between 0.02 and 0.09%/h. Though it is evident that other musculoskeletal tissues should also express some level of plasticity, data on protein synthesis rates of most of these tissues in vivo in humans is limited. Six otherwise healthy patients (62±3 y), scheduled to undergo unilateral total knee arthroplasty, were subjected to primed continuous intravenous infusions with L-[ring-13C6]-Phenylalanine throughout the surgical procedure. Tissue samples obtained during surgery included muscle, tendon, cruciate ligaments, cartilage, bone, menisci, fat, and synovium. Tissue-specific fractional protein synthesis rates (%/h) were assessed by measuring the incorporation of L-[ring-13C6]-Phenylalanine in tissue protein and were compared with muscle tissue protein synthesis rates using a paired t test. Tendon, bone, cartilage, Hoffa’s fat pad, anterior and posterior cruciate ligament, and menisci tissue protein synthesis rates averaged 0.06±0.01, 0.03±0.01, 0.04±0.01, 0.11±0.03, 0.07±0.02, 0.04±0.01, and 0.04±0.01%/h, respectively, and did not significantly differ from skeletal muscle protein synthesis rates (0.04±0.01%/h; P>0.05). Synovium derived protein (0.13±0.03%/h) and intercondylar notch bone tissue protein synthesis rates (0.03±0.01%/h) were respectively higher and lower compared to skeletal muscle protein synthesis rates (P<0.05 and P<0.01, respectively). Basal protein synthesis rates in various musculoskeletal tissues are within the same range of skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, cartilage, ligament, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and 0.13% per hour in vivo in humans.
Clinical trial registration: NTR5147
Klíčová slova:
Skeletal muscles – Cartilage – Tendons – Ligaments – Protein synthesis – Tissue proteins
Zdroje
1. Burd NA, Groen BB, Beelen M, Senden JM, Gijsen AP, van Loon LJ. The reliability of using the single-biopsy approach to assess basal muscle protein synthesis rates in vivo in humans. Metabolism. 2012;61(7):931–6. doi: 10.1016/j.metabol.2011.11.004 22209666.
2. Rennie MJ, Smith K, Watt PW. Measurement of human tissue protein synthesis: an optimal approach. Am J Physiol. 1994;266(3 Pt 1):E298–307. doi: 10.1152/ajpendo.1994.266.3.E298 8166250.
3. Waterlow JC. Protein turnover. Oxfordshire: CABI; 2006.
4. Babraj JA, Cuthbertson DJ, Smith K, Langberg H, Miller B, Krogsgaard MR, et al. Collagen synthesis in human musculoskeletal tissues and skin. Am J Physiol Endocrinol Metab. 2005;289(5):E864–9. doi: 10.1152/ajpendo.00243.2005 15972270.
5. Dideriksen K, Sindby AK, Krogsgaard M, Schjerling P, Holm L, Langberg H. Effect of acute exercise on patella tendon protein synthesis and gene expression. Springerplus. 2013;2(1):109. doi: 10.1186/2193-1801-2-109 23586004.
6. Hansen M, Boesen A, Holm L, Flyvbjerg A, Langberg H, Kjaer M. Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Med Sci Sports. 2013;23(5):614–9. doi: 10.1111/j.1600-0838.2011.01431.x 22288768.
7. Hansen M, Miller BF, Holm L, Doessing S, Petersen SG, Skovgaard D, et al. Effect of administration of oral contraceptives in vivo on collagen synthesis in tendon and muscle connective tissue in young women. J Appl Physiol (1985). 2009;106(4):1435–43. doi: 10.1152/japplphysiol.90933.2008 18845777.
8. Miller BF, Hansen M, Olesen JL, Schwarz P, Babraj JA, Smith K, et al. Tendon collagen synthesis at rest and after exercise in women. J Appl Physiol (1985). 2007;102(2):541–6. doi: 10.1152/japplphysiol.00797.2006 16990502.
9. Miller BF, Olesen JL, Hansen M, Dossing S, Crameri RM, Welling RJ, et al. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol. 2005;567(Pt 3):1021–33. doi: 10.1113/jphysiol.2005.093690 16002437.
10. Nielsen RH, Doessing S, Goto K, Holm L, Reitelseder S, Agergaard J, et al. GH receptor blocker administration and muscle-tendon collagen synthesis in humans. Growth Horm IGF Res. 2011;21(3):140–5. doi: 10.1016/j.ghir.2011.03.006 21498100.
11. Nielsen RH, Holm L, Jensen JK, Heinemeier KM, Remvig L, Kjaer M. Tendon protein synthesis rate in classic Ehlers-Danlos patients can be stimulated with insulin-like growth factor-I. J Appl Physiol (1985). 2014;117(7):694–8. doi: 10.1152/japplphysiol.00157.2014 25103963.
12. Nielsen RH, Holm L, Malmgaard-Clausen NM, Reitelseder S, Heinemeier KM, Kjaer M. Increase in tendon protein synthesis in response to insulin-like growth factor-I is preserved in elderly men. J Appl Physiol (1985). 2014;116(1):42–6. doi: 10.1152/japplphysiol.01084.2013 24265284.
13. Petersen SG, Miller BF, Hansen M, Kjaer M, Holm L. Exercise and NSAIDs: effect on muscle protein synthesis in patients with knee osteoarthritis. Med Sci Sports Exerc. 2011;43(3):425–31. doi: 10.1249/MSS.0b013e3181f27375 20689451.
14. Dideriksen K, Boesen AP, Reitelseder S, Couppe C, Svensson R, Schjerling P, et al. Tendon collagen synthesis declines with immobilization in elderly humans: no effect of anti-inflammatory medication. J Appl Physiol (1985). 2017;122(2):273–82. doi: 10.1152/japplphysiol.00809.2015 27932679.
15. Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, et al. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol. 2010;588(Pt 2):341–51. doi: 10.1113/jphysiol.2009.179325 19933753.
16. Magnusson SP, Heinemeier KM, Kjaer M. Collagen Homeostasis and Metabolism. Adv Exp Med Biol. 2016;920:11–25. Epub 2016/08/19. doi: 10.1007/978-3-319-33943-6_2 27535245.
17. Baar K. Minimizing Injury and Maximizing Return to Play: Lessons from Engineered Ligaments. Sports Med. 2017;47(Suppl 1):5–11. Epub 2017/03/24. doi: 10.1007/s40279-017-0719-x 28332110.
18. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–98. doi: 10.1152/physrev.00031.2003 15044685.
19. Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, et al. From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 2009;19(4):500–10. doi: 10.1111/j.1600-0838.2009.00986.x 19706001.
20. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35(7):609–16. 1108172.
21. Bryceland JK, Powell AJ, Nunn T. Knee Menisci. Cartilage. 2017;8(2):99–104. Epub 2017/03/28. doi: 10.1177/1947603516654945 28345407.
22. Marenzana M, Arnett TR. The Key Role of the Blood Supply to Bone. Bone Res. 2013;1(3):203–15. Epub 2013/09/01. doi: 10.4248/BR201303001 26273504.
23. Nemschak G, Pretterklieber ML. The Patellar Arterial Supply via the Infrapatellar Fat Pad (of Hoffa): A Combined Anatomical and Angiographical Analysis. Anat Res Int. 2012;2012:713838. Epub 2012/06/22. doi: 10.1155/2012/713838 22720162.
24. Smith MD. The normal synovium. Open Rheumatol J. 2011;5:100–6. Epub 2012/01/27. doi: 10.2174/1874312901105010100 22279508.
25. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–8. Epub 2009/11/01. doi: 10.1177/1941738109350438 23015907.
26. Travascio F, Jackson AR. The nutrition of the human meniscus: A computational analysis investigating the effect of vascular recession on tissue homeostasis. J Biomech. 2017;61:151–9. Epub 2017/08/06. doi: 10.1016/j.jbiomech.2017.07.019 28778387.
27. Smeets JSJ, Horstman AMH, Schijns O, Dings JTA, Hoogland G, Gijsen AP, et al. Brain tissue plasticity: protein synthesis rates of the human brain. Brain. 2018;141(4):1122–9. Epub 2018/02/13. doi: 10.1093/brain/awy015 29432531.
28. Burd NA, West DW, Rerecich T, Prior T, Baker SK, Phillips SM. Validation of a single biopsy approach and bolus protein feeding to determine myofibrillar protein synthesis in stable isotope tracer studies in humans. Nutr Metab (Lond). 2011;8:15. Epub 2011/03/11. doi: 10.1186/1743-7075-8-15 21388545.
29. Gorissen SH, Horstman AM, Franssen R, Crombag JJ, Langer H, Bierau J, et al. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial. J Nutr. 2016;146(9):1651–9. doi: 10.3945/jn.116.231340 27440260.
30. Gorissen SH, Horstman AM, Franssen R, Kouw IW, Wall BT, Burd NA, et al. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial. Am J Clin Nutr. 2017;105(2):332–42. doi: 10.3945/ajcn.115.129924 27903518.
31. Hursel R, Martens EA, Gonnissen HK, Hamer HM, Senden JM, van Loon LJ, et al. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates—A Substudy. PLoS One. 2015;10(9):e0137183. doi: 10.1371/journal.pone.0137183 26367529.
32. Kouw IW, Gorissen SH, Burd NA, Cermak NM, Gijsen AP, van Kranenburg J, et al. Postprandial Protein Handling Is Not Impaired in Type 2 Diabetes Patients When Compared With Normoglycemic Controls. J Clin Endocrinol Metab. 2015;100(8):3103–11. doi: 10.1210/jc.2015-1234 26037513.
33. Kramer IF, Verdijk LB, Hamer HM, Verlaan S, Luiking YC, Kouw IW, et al. Both basal and post-prandial muscle protein synthesis rates, following the ingestion of a leucine-enriched whey protein supplement, are not impaired in sarcopenic older males. Clin Nutr. 2016. doi: 10.1016/j.clnu.2016.09.023 27743615.
34. Wall BT, Gorissen SH, Pennings B, Koopman R, Groen BB, Verdijk LB, et al. Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion. PLoS One. 2015;10(11):e0140903. doi: 10.1371/journal.pone.0140903 26536130.
35. Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR. Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA. 2001;286(10):1206–12. doi: 10.1001/jama.286.10.1206 11559266.
36. Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, et al. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012;108(10):1780–8. doi: 10.1017/S0007114511007422 22313809.
37. Yang Y, Churchward-Venne TA, Burd NA, Breen L, Tarnopolsky MA, Phillips SM. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr Metab (Lond). 2012;9(1):57. doi: 10.1186/1743-7075-9-57 22698458.
38. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64. doi: 10.3945/ajcn.112.037556 23134885.
39. Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol (1985). 1992;73(4):1383–8. doi: 10.1152/jappl.1992.73.4.1383 1280254.
40. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273(1 Pt 1):E99–107. doi: 10.1152/ajpendo.1997.273.1.E99 9252485.
41. Deitrick JE. The effect of immobilization on metabolic and physiological functions of normal men. Bull N Y Acad Med. 1948;24(6):364–75. 18860463.
42. Gibson JN, Halliday D, Morrison WL, Stoward PJ, Hornsby GA, Watt PW, et al. Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clin Sci (Lond). 1987;72(4):503–9. doi: 10.1042/cs0720503 2435445.
43. Ingemann-Hansen T, Halkjaer-Kristensen J. Computerized tomographic determination of human thigh components. The effects of immobilization in plaster and subsequent physical training. Scand J Rehabil Med. 1980;12(1):27–31. 7384763.
44. Finni T, Komi PV, Lepola V. In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. Eur J Appl Physiol. 2000;83(4–5):416–26. doi: 10.1007/s004210000289 11138584.
45. Shelbourne KD, Beck MB, Gray T. Anterior cruciate ligament reconstruction with contralateral autogenous patellar tendon graft: evaluation of donor site strength and subjective results. Am J Sports Med. 2015;43(3):648–53. Epub 2014/12/19. doi: 10.1177/0363546514560877 25520302.
46. Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: A 10-year study. Knee. 2006;13(3):184–8. Epub 2006/04/11. doi: 10.1016/j.knee.2006.01.005 16603363.
47. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde L. Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int. 1999;65(3):203–10. doi: 10.1007/s002239900683 10441651.
48. Zioupos P. Ageing human bone: factors affecting its biomechanical properties and the role of collagen. J Biomater Appl. 2001;15(3):187–229. doi: 10.1106/5JUJ-TFJ3-JVVA-3RJ0 11261600.
49. Mundy GR. Bone resorption and turnover in health and disease. Bone. 1987;8 Suppl 1:S9–16. 3318891.
50. Abrams SA. Normal acquisition and loss of bone mass. Horm Res. 2003;60 Suppl 3:71–6. doi: 10.1159/000074505 14671401.
51. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, et al. Peak bone mass. Osteoporos Int. 2000;11(12):985–1009. doi: 10.1007/s001980070020 11256898.
52. Babraj JA, Smith K, Cuthbertson DJ, Rickhuss P, Dorling JS, Rennie MJ. Human bone collagen synthesis is a rapid, nutritionally modulated process. J Bone Miner Res. 2005;20(6):930–7. doi: 10.1359/JBMR.050201 15883632.
53. Heinemeier KM, Schjerling P, Heinemeier J, Moller MB, Krogsgaard MR, Grum-Schwensen T, et al. Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human cartilage. Sci Transl Med. 2016;8(346):346ra90. doi: 10.1126/scitranslmed.aad8335 27384346.
54. Paxton JZ, Grover LM, Baar K. Engineering an in vitro model of a functional ligament from bone to bone. Tissue Eng Part A. 2010;16(11):3515–25. doi: 10.1089/ten.TEA.2010.0039 20593972.
55. Shaw G, Lee-Barthel A, Ross ML, Wang B, Baar K. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am J Clin Nutr. 2017;105(1):136–43. doi: 10.3945/ajcn.116.138594 27852613.
56. Vieira CP, De Oliveira LP, Da Re Guerra F, Dos Santos De Almeida M, Marcondes MC, Pimentel ER. Glycine improves biochemical and biomechanical properties following inflammation of the achilles tendon. Anat Rec (Hoboken). 2015;298(3):538–45. doi: 10.1002/ar.23041 25156668.
57. Saddik D, McNally EG, Richardson M. MRI of Hoffa’s fat pad. Skeletal Radiol. 2004;33(8):433–44. doi: 10.1007/s00256-003-0724-z 15221217.
58. Kohn D, Deiler S, Rudert M. Arterial blood supply of the infrapatellar fat pad. Anatomy and clinical consequences. Arch Orthop Trauma Surg. 1995;114(2):72–5. doi: 10.1007/bf00422828 7734236.
59. Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, Van Osch GJ, Van Offel JF, Verhaar JA, et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthritis Cartilage. 2010;18(7):876–82. doi: 10.1016/j.joca.2010.03.014 20417297.
60. Ene R, Sinescu RD, Ene P, Cirstoiu MM, Cirstoiu FC. Synovial inflammation in patients with different stages of knee osteoarthritis. Rom J Morphol Embryol. 2015;56(1):169–73. 25826502.
61. McAlindon TE, Nuite M, Krishnan N, Ruthazer R, Price LL, Burstein D, et al. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthritis Cartilage. 2011;19(4):399–405. doi: 10.1016/j.joca.2011.01.001 21251991.
62. Clark KL, Sebastianelli W, Flechsenhar KR, Aukermann DF, Meza F, Millard RL, et al. 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Curr Med Res Opin. 2008;24(5):1485–96. doi: 10.1185/030079908X291967 18416885.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF