Evolution of high tooth replacement rates in theropod dinosaurs
Autoři:
Michael D. D’Emic aff001; Patrick M. O’Connor aff003; Thomas R. Pascucci aff001; Joanna N. Gavras aff001; Elizabeth Mardakhayava aff001; Eric K. Lund aff003
Působiště autorů:
Department of Biology, Adelphi University, Garden City, New York, United States of America
aff001; Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America
aff002; Department of Biomedical Sciences, Ohio University, Athens, Ohio, United States of America
aff003; Ohio Center for Ecology and Evolutionary Studies, Athens, Ohio, United States of America
aff004; Department of Biological Sciences, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States of America
aff005
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224734
Souhrn
Tooth replacement rate is an important contributor to feeding ecology for polyphyodont animals. Dinosaurs exhibit a wide range of tooth replacement rates, mirroring their diverse craniofacial specializations, but little is known about broad-scale allometric or evolutionary patterns within the group. In the current broad but sparse dinosaurian sample, only three non-avian theropod tooth replacement rates have been estimated. We estimated tooth formation and replacement rates in three additional non-avian theropod dinosaurs, the derived latest Cretaceous abelisaurid Majungasaurus and the more generalized Late Jurassic Allosaurus and Ceratosaurus. We created the largest dental histological and CT dataset for any theropod dinosaur, sectioning and scanning over a dozen toothed elements of Majungasaurus and several additional elements from the other two genera. Using this large sample, we created models of tooth formation time that allow for theropod replacement rates to be estimated non-destructively. In contrast to previous results for theropods, we found high tooth replacement rates in all three genera, with Allosaurus and Ceratosaurus rates of ~100 days and 56 days for Majungasaurus. The latter rate is on par with those of derived herbivorous dinosaurs including some neosauropods, hadrosaurids, and ceratopsians. This elevated rate may be a response to high rates of tooth wear in Majungasaurus. Within Dinosauria, there is no relationship between body mass and tooth replacement rate and no trends in replacement rate over time. Rather, tooth replacement rate is clade-specific, with elevated rates in abelisaurids and diplodocoids and lower rates in coelurosaurs.
Klíčová slova:
Phylogenetics – Teeth – Computed axial tomography – Dentition – Theropoda – Herbivory – Dinosaurs – Sauropoda
Zdroje
1. Erickson GM. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts. Proc Nat Acad Sci. 1996a;93: 14623–14627.
2. D’Emic MD, Whitlock JA, Smith KM, Fisher DC, Wilson JA. Evolution of high tooth replacement rates in sauropod dinosaurs. PLoS ONE 2013a;8: e69235.
3. Brink KS, Reisz RR, LeBlanc ARH, Chang RS, Lee YC, Chiang CC, Huang T, Evans DC. Developmental and evolutionary novelty in the serrated teeth of theropod dinosaurs. Sci Rep. 2015;5: 12338 doi: 10.1038/srep12338 26216577
4. Button K, You H, Kirkland J, Zanno L. Incremental growth of therizinosaurian dental tissues: implications for dietary transitions in Theropoda. PeerJ. 2017;5: e4129. doi: 10.7717/peerj.4129 29250467
5. Zhou YC, Sullivan C, Zhang FC. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vert. PalAs.; 2019: 57: 38–50.
6. Erickson GM. Daily deposition of dentine in juvenile Alligator and assessment of tooth replacement rates using incremental line counts. J Morph. 1996b;228: 189–194.
7. Sampson SD, Witmer LM. Craniofacial anatomy of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J Vert Paleo. Mem. 2007;8: 32–102.
8. Smith JB. Dental morphology and variation in Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J Vert Paleo Mem. 2007;8: 103–126.
9. Padian K, Lamm ET. Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis and Interpretations. University of California Press; 2013.
10. Scheyer TM, Moser M. Survival of the thinnest: rediscovery of Bauer’s (1898) ichthyosaur tooth sections from Upper Jurassic lithographic limestone quarries, south Germany. Swiss J Geosci. 2011;104 (Suppl 1), S147–S157.
11. Dumont M, Tafforeau P, Bertin T, Bhullar B.-A. Field D, Schulp A, Strilisky B, Thivichon-Prince B, Viriot L, Louchart A. 2016 Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the “last” toothed birds. BMC Evo Bio. 2016;16: 1–28.
12. Mishima H, Iwasa Y, Yokota R, Elsey RM. The short-period incremental lines in dentin of Alligatoridae teeth. In: Kobayaski I, Ozawa H, editors. Biomineralization (BIOM2001): formation, diversity, evolution and application, Proceedings of the 8th International Symposium on Biomineralization Tokai University Press, Kanagawa, 2003. pp. 317–320.
13. Bromage TG, Lacruz RS, Hogg R, Goldman HM, McFarlin SC, Warshaw J, Dirks W, Perez-Ochoa A, Smolyar I, Enlow DH, Boyde A. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcif Tiss Int. 2009;84: 388–404.
14. Hammer Ø., Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeont Elect 2001;4: 1–9.
15. Kosch JCD, Schwarz-Wings D, Fritsch G, Issever AS. Tooth replacement and dentition in Giraffatitan brancai. J Vert Paleo, Programs and Abstracts, 2014; 162.
16. Schwarz D, Kosch JCD, Fritsch G, Hildebrandt T. Dentition and tooth replacement of Dicraeosaurus hansemanni (Dinosauria, Sauropoda, Diplodocoidea) from the Tendaguru Formation of Tanzania, J Vert Paleo, 2015;35: e1008134.
17. Benson RBJ, Campione NE, Carrano MT, Mannion PD, Sullivan C, Upchurch P, Evans D. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 2014;12, 1001853.
18. Coria RA, Chiappe LM. Tooth replacement in a sauropod premaxilla from the Upper Cretaceous of Patagonia, Argentina. Ameghin. 2001;38: 463–466.
19. D’Emic MD, Mannion PD, Upchurch P, Benson RBJ, Pang Q, Cheng Q. Osteology of Huabeisaurus allocotus (Sauropoda: Titanosauriformes) from the Upper Cretaceous of China. PLoS ONE 2013b;8: e69375.
20. Campione NE, Evans DC. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 2012;10: 1–21. doi: 10.1186/1741-7007-10-1 22214525
21. Campione NE, Evans DC, Brown CM, Carrano MT. Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods Ecol Evol. 2014;5: 913–923.
22. Chure D, Brooks BB, Whitlock JA, Wilson JA. First complete sauropod dinosaur skull from the Cretaceous of the Americas and the evolution of sauropod dentition. Naturwiss. 2010;97: 379–391. doi: 10.1007/s00114-010-0650-6 20179896
23. Sereno PC, Wilson JA, Witmer LM, Whitlock JA, Maga A, Ide O, Rowe TA. Structural Extremes in a Cretaceous Dinosaur. PLoS ONE 2007; 2: e1230. doi: 10.1371/journal.pone.0001230 18030355
24. Renvoisé E, Michon F. An evo-devo perspective on ever-growing teeth in mammals and dental stem cell maintenance. Fron Phys 2014;5: 1–12.
25. Edmund AG. Tooth replacement phenomena in lower vertebrates. Royal Ontario Museum Life Science Division Contribution 1960;52: 1–190.
26. Rogers R, Krause DWK, Rogers KC. Cannibalism in the Madagascan dinosaur Majungatholus atopus. Nature 2003;422: 515–518. doi: 10.1038/nature01532 12673249
27. Sereno PC, Brusatte S. Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeo Pol. 2008;53: 15–46.
28. Gignac P, Erickson GM. The biomechanics behind extreme osteophagy in Tyrannosaurus rex. J Vert Paleo, Programs and Abstracts, 2018; 134.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF