Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells
Autoři:
Jayashree Chadchankar aff001; Victoria Korboukh aff002; Leslie C. Conway aff001; Heike J. Wobst aff003; Chandler A. Walker aff003; Peter Doig aff002; Steve J. Jacobsen aff003; Nicholas J. Brandon aff003; Stephen J. Moss aff003; Qi Wang aff003
Působiště autorů:
AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
aff001; Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
aff002; Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
aff003; Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States of America
aff004; Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
aff005
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225145
Souhrn
USP14 is a cysteine protease deubiquitinase associated with the proteasome and plays important catalytic and allosteric roles in proteasomal degradation. USP14 inhibition has been considered a therapeutic strategy for accelerating degradation of aggregation-prone proteins in neurodegenerative diseases and for inhibiting proteasome function to induce apoptotic cell death in cancers. Here we studied the effects of USP14 inhibition in mammalian cells using small molecule inhibitors and an inactive USP14 mutant C114A. Neither the inhibitors nor USP14 C114A showed consistent or significant effects on the level of TDP-43, tau or α-synuclein in HEK293T cells. However, USP14 C114A led to a robust accumulation of ubiquitinated proteins, which were isolated by ubiquitin immunoprecipitation and identified by mass spectrometry. Among these proteins we confirmed that ubiquitinated β-catenin accumulated in the cells expressing USP14 C114A with immunoblotting and immunoprecipitation experiments. The proteasome binding domain of USP14 C114A is required for its effect on ubiquitinated proteins. UCHL5 is the other cysteine protease deubiquitinase associated with the proteasome. Interestingly, the inactive mutant of UCHL5 C88A also caused an accumulation of ubiquitinated proteins in HEK293T cells but did not affect β-catenin, demonstrating USP14 but not UCHL5 has a specific effect on β-catenin. We used ubiquitin immunoprecipitation and mass spectrometry to identify the accumulated ubiquitinated proteins in UCHL5 C88A expressing cells which are mostly distinct from those identified in USP14 C114A expressing cells. Among the identified proteins are well established proteasome substrates and proteasome subunits. Besides β-catenin, we also verified with immunoblotting that UCHL5 C88A inhibits its own deubiquitination and USP14 C114A inhibits deubiquitination of two proteasomal subunits PSMC1 and PSMD4. Together our data suggest that USP14 and UCHL5 can deubiquitinate distinct substrates at the proteasome and regulate the ubiquitination of the proteasome itself which is tightly linked to its function.
Klíčová slova:
Immune system proteins – Proteases – Immunoprecipitation – Proteasomes – Immunoblotting – Ubiquitination – Amyotrophic lateral sclerosis – Coomassie Blue staining
Zdroje
1. Collins GA, Goldberg AL. The Logic of the 26S Proteasome. Cell. 2017;169(5):792–806. Epub 2017/05/20. doi: 10.1016/j.cell.2017.04.023 28525752; PubMed Central PMCID: PMC5609836.
2. Komander D, Rape M. The ubiquitin code. Annual review of biochemistry. 2012;81:203–29. Epub 2012/04/25. doi: 10.1146/annurev-biochem-060310-170328 22524316.
3. Saeki Y. Ubiquitin recognition by the proteasome. J Biochem. 2017;161(2):113–24. Epub 2017/01/11. doi: 10.1093/jb/mvw091 28069863.
4. Wilkinson KD, Urban MK, Haas AL. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J Biol Chem. 1980;255(16):7529–32. Epub 1980/08/25. 6249803.
5. Kish-Trier E, Hill CP. Structural biology of the proteasome. Annu Rev Biophys. 2013;42:29–49. Epub 2013/02/19. doi: 10.1146/annurev-biophys-083012-130417 23414347; PubMed Central PMCID: PMC4878838.
6. Tomko RJ Jr., Hochstrasser M. Molecular architecture and assembly of the eukaryotic proteasome. Annual review of biochemistry. 2013;82:415–45. Epub 2013/03/19. doi: 10.1146/annurev-biochem-060410-150257 23495936; PubMed Central PMCID: PMC3827779.
7. de Poot SAH, Tian G, Finley D. Meddling with Fate: The Proteasomal Deubiquitinating Enzymes. J Mol Biol. 2017. Epub 2017/10/11. doi: 10.1016/j.jmb.2017.09.015 28988953.
8. Finley D, Chen X, Walters KJ. Gates, Channels, and Switches: Elements of the Proteasome Machine. Trends Biochem Sci. 2016;41(1):77–93. Epub 2015/12/09. doi: 10.1016/j.tibs.2015.10.009 26643069; PubMed Central PMCID: PMC4706478.
9. Lam YA, Xu W, DeMartino GN, Cohen RE. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature. 1997;385(6618):737–40. doi: 10.1038/385737a0 9034192.
10. Yao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature. 2002;419(6905):403–7. doi: 10.1038/nature01071 12353037.
11. Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell. 2002;10(3):495–507. doi: 10.1016/s1097-2765(02)00638-x 12408819.
12. Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 2001;20(18):5187–96. Epub 2001/09/22. doi: 10.1093/emboj/20.18.5187 11566882; PubMed Central PMCID: PMC125629.
13. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science. 2002;298(5593):611–5. doi: 10.1126/science.1075898 12183636.
14. Koulich E, Li X, DeMartino GN. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell. 2008;19(3):1072–82. doi: 10.1091/mbc.E07-10-1040 18162577; PubMed Central PMCID: PMC2262970.
15. Yao T, Song L, Jin J, Cai Y, Takahashi H, Swanson SK, et al. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell. 2008;31(6):909–17. Epub 2008/10/17. doi: 10.1016/j.molcel.2008.08.027 18922472; PubMed Central PMCID: PMC2577292.
16. Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK, et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol. 2006;8(9):994–1002. doi: 10.1038/ncb1460 16906146.
17. Al-Shami A, Jhaver KG, Vogel P, Wilkins C, Humphries J, Davis JJ, et al. Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development. PLoS One. 2010;5(10):e13654. Epub 2010/11/05. doi: 10.1371/journal.pone.0013654 21048919; PubMed Central PMCID: PMC2965108.
18. Chernova TA, Allen KD, Wesoloski LM, Shanks JR, Chernoff YO, Wilkinson KD. Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool. J Biol Chem. 2003;278(52):52102–15. Epub 2003/10/16. doi: 10.1074/jbc.M310283200 14559899.
19. Anderson C, Crimmins S, Wilson JA, Korbel GA, Ploegh HL, Wilson SM. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J Neurochem. 2005;95(3):724–31. Epub 2005/09/30. doi: 10.1111/j.1471-4159.2005.03409.x 16190881.
20. Kim HT, Goldberg AL. The deubiquitinating enzyme Usp14 allosterically inhibits multiple proteasomal activities and ubiquitin-independent proteolysis. J Biol Chem. 2017;292(23):9830–9. Epub 2017/04/19. doi: 10.1074/jbc.M116.763128 28416611; PubMed Central PMCID: PMC5465503.
21. Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell. 2006;127(1):99–111. Epub 2006/10/05. doi: 10.1016/j.cell.2006.07.038 17018280.
22. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467(7312):179–84. Epub 2010/09/11. doi: 10.1038/nature09299 20829789; PubMed Central PMCID: PMC2939003.
23. Homma T, Ishibashi D, Nakagaki T, Fuse T, Mori T, Satoh K, et al. Ubiquitin-specific protease 14 modulates degradation of cellular prion protein. Sci Rep. 2015;5:11028. Epub 2015/06/11. doi: 10.1038/srep11028 26061634; PubMed Central PMCID: PMC4462021.
24. Boselli M, Lee BH, Robert J, Prado MA, Min SW, Cheng C, et al. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J Biol Chem. 2017. Epub 2017/10/04. doi: 10.1074/jbc.M117.815126 28972160.
25. Hyrskyluoto A, Bruelle C, Lundh SH, Do HT, Kivinen J, Rappou E, et al. Ubiquitin-specific protease-14 reduces cellular aggregates and protects against mutant huntingtin-induced cell degeneration: involvement of the proteasome and ER stress-activated kinase IRE1alpha. Hum Mol Genet. 2014;23(22):5928–39. Epub 2014/06/22. doi: 10.1093/hmg/ddu317 24951540.
26. Jin YN, Chen PC, Watson JA, Walters BJ, Phillips SE, Green K, et al. Usp14 deficiency increases tau phosphorylation without altering tau degradation or causing tau-dependent deficits. PLoS One. 2012;7(10):e47884. Epub 2012/11/13. doi: 10.1371/journal.pone.0047884 23144711; PubMed Central PMCID: PMC3483306.
27. Ortuno D, Carlisle HJ, Miller S. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases? F1000Res. 2016;5:137. Epub 2016/03/22. doi: 10.12688/f1000research.7800.2 26998235; PubMed Central PMCID: PMC4792207.
28. Kiprowska MJ, Stepanova A, Todaro DR, Galkin A, Haas A, Wilson SM, et al. Neurotoxic mechanisms by which the USP14 inhibitor IU1 depletes ubiquitinated proteins and Tau in rat cerebral cortical neurons: Relevance to Alzheimer's disease. Biochimica et biophysica acta. 2017;1863(6):1157–70. Epub 2017/04/05. doi: 10.1016/j.bbadis.2017.03.017 28372990; PubMed Central PMCID: PMC5549686.
29. D'Arcy P, Brnjic S, Olofsson MH, Fryknas M, Lindsten K, De Cesare M, et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med. 2011;17(12):1636–40. doi: 10.1038/nm.2536 22057347.
30. Wobst HJ, Wesolowski SS, Chadchankar J, Delsing L, Jacobsen S, Mukherjee J, et al. Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro. Front Mol Neurosci. 2017;10:46. Epub 2017/03/14. doi: 10.3389/fnmol.2017.00046 28286471; PubMed Central PMCID: PMC5323424.
31. Lee BH, Finley D, King RW. A High-Throughput Screening Method for Identification of Inhibitors of the Deubiquitinating Enzyme USP14. Curr Protoc Chem Biol. 2012;4(4):311–30. Epub 2013/06/22. doi: 10.1002/9780470559277.ch120078 23788557; PubMed Central PMCID: PMC3690187.
32. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–72. Epub 2008/03/01. doi: 10.1126/science.1154584 18309045.
33. Hassiepen U, Eidhoff U, Meder G, Bulber JF, Hein A, Bodendorf U, et al. A sensitive fluorescence intensity assay for deubiquitinating proteases using ubiquitin-rhodamine110-glycine as substrate. Anal Biochem. 2007;371(2):201–7. Epub 2007/09/18. doi: 10.1016/j.ab.2007.07.034 17869210.
34. Kemp M. Recent Advances in the Discovery of Deubiquitinating Enzyme Inhibitors. Prog Med Chem. 2016;55:149–92. doi: 10.1016/bs.pmch.2015.10.002 26852935.
35. Ziv I, Matiuhin Y, Kirkpatrick DS, Erpapazoglou Z, Leon S, Pantazopoulou M, et al. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol Cell Proteomics. 2011;10(5):M111 009753. Epub 2011/03/24. doi: 10.1074/mcp.M111.009753 21427232; PubMed Central PMCID: PMC3098606.
36. Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5(1):a007898. Epub 2012/11/22. doi: 10.1101/cshperspect.a007898 23169527; PubMed Central PMCID: PMC3579403.
37. Smibert P, Yang JS, Azzam G, Liu JL, Lai EC. Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol. 2013;20(7):789–95. Epub 2013/05/28. doi: 10.1038/nsmb.2606 23708604; PubMed Central PMCID: PMC3702675.
38. Sell GL, Margolis SS. From UBE3A to Angelman syndrome: a substrate perspective. Front Neurosci. 2015;9:322. Epub 2015/10/07. doi: 10.3389/fnins.2015.00322 26441497; PubMed Central PMCID: PMC4569740.
39. Homan CC, Kumar R, Nguyen LS, Haan E, Raymond FL, Abidi F, et al. Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth. Am J Hum Genet. 2014;94(3):470–8. Epub 2014/03/13. doi: 10.1016/j.ajhg.2014.02.004 24607389; PubMed Central PMCID: PMC3951929.
40. Randles L, Anchoori RK, Roden RB, Walters KJ. The Proteasome Ubiquitin Receptor hRpn13 and Its Interacting Deubiquitinating Enzyme Uch37 Are Required for Proper Cell Cycle Progression. J Biol Chem. 2016;291(16):8773–83. Epub 2016/02/26. doi: 10.1074/jbc.M115.694588 26907685; PubMed Central PMCID: PMC4861445.
41. Jacobson AD, MacFadden A, Wu Z, Peng J, Liu CW. Autoregulation of the 26S proteasome by in situ ubiquitination. Mol Biol Cell. 2014;25(12):1824–35. Epub 2014/04/20. doi: 10.1091/mbc.E13-10-0585 24743594; PubMed Central PMCID: PMC4055262.
42. Besche HC, Sha Z, Kukushkin NV, Peth A, Hock EM, Kim W, et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J. 2014;33(10):1159–76. doi: 10.1002/embj.201386906 24811749; PubMed Central PMCID: PMC4193922.
43. Li J, Wang J, Hou W, Jing Z, Tian C, Han Y, et al. Phosphorylation of Ataxin-10 by polo-like kinase 1 is required for cytokinesis. Cell Cycle. 2011;10(17):2946–58. Epub 2011/08/23. doi: 10.4161/cc.10.17.15922 21857149.
44. Goitea VE, Hallak ME. Calreticulin and Arginylated Calreticulin Have Different Susceptibilities to Proteasomal Degradation. J Biol Chem. 2015;290(26):16403–14. Epub 2015/05/15. doi: 10.1074/jbc.M114.626127 25969538; PubMed Central PMCID: PMC4481237.
45. Bashore C, Dambacher CM, Goodall EA, Matyskiela ME, Lander GC, Martin A. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat Struct Mol Biol. 2015;22(9):712–9. Epub 2015/08/25. doi: 10.1038/nsmb.3075 26301997; PubMed Central PMCID: PMC4560640.
46. Peth A, Kukushkin N, Bosse M, Goldberg AL. Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs. J Biol Chem. 2013;288(11):7781–90. Epub 2013/01/24. doi: 10.1074/jbc.M112.441907 23341450; PubMed Central PMCID: PMC3597817.
47. Peth A, Besche HC, Goldberg AL. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol Cell. 2009;36(5):794–804. Epub 2009/12/17. doi: 10.1016/j.molcel.2009.11.015 20005843; PubMed Central PMCID: PMC2796264.
48. Lee MJ, Lee BH, Hanna J, King RW, Finley D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics. 2011;10(5):R110 003871. Epub 2010/09/09. doi: 10.1074/mcp.R110.003871 20823120; PubMed Central PMCID: PMC3098602.
49. Aufderheide A, Beck F, Stengel F, Hartwig M, Schweitzer A, Pfeifer G, et al. Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc Natl Acad Sci U S A. 2015;112(28):8626–31. Epub 2015/07/02. doi: 10.1073/pnas.1510449112 26130806; PubMed Central PMCID: PMC4507206.
50. Kuo CL, Goldberg AL. Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. Proc Natl Acad Sci U S A. 2017;114(17):E3404–E13. Epub 2017/04/12. doi: 10.1073/pnas.1701734114 28396413; PubMed Central PMCID: PMC5410784.
51. Morrow ME, Morgan MT, Clerici M, Growkova K, Yan M, Komander D, et al. Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins. EMBO Rep. 2018;19(10). Epub 2018/08/29. doi: 10.15252/embr.201745680 30150323; PubMed Central PMCID: PMC6172466.
52. Sahtoe DD, van Dijk WJ, El Oualid F, Ekkebus R, Ovaa H, Sixma TK. Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol Cell. 2015;57(5):887–900. Epub 2015/02/24. doi: 10.1016/j.molcel.2014.12.039 25702870; PubMed Central PMCID: PMC4352763.
53. Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, et al. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci U S A. 2016;113(10):2642–7. Epub 2016/03/02. doi: 10.1073/pnas.1601561113 26929360; PubMed Central PMCID: PMC4790998.
54. Mashtalir N, Daou S, Barbour H, Sen NN, Gagnon J, Hammond-Martel I, et al. Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol Cell. 2014;54(3):392–406. Epub 2014/04/08. doi: 10.1016/j.molcel.2014.03.002 24703950.
55. Burgie SE, Bingman CA, Soni AB, Phillips GN Jr. Structural characterization of human Uch37. Proteins. 2012;80(2):649–54. Epub 2011/09/29. doi: 10.1002/prot.23147 21953935; PubMed Central PMCID: PMC3251636.
56. Liu B, Jiang S, Li M, Xiong X, Zhu M, Li D, et al. Proteome-wide analysis of USP14 substrates revealed its role in hepatosteatosis via stabilization of FASN. Nat Commun. 2018;9(1):4770. Epub 2018/11/15. doi: 10.1038/s41467-018-07185-y 30425250; PubMed Central PMCID: PMC6233205.
57. Barmada SJ, Serio A, Arjun A, Bilican B, Daub A, Ando DM, et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol. 2014;10(8):677–85. Epub 2014/06/30. doi: 10.1038/nchembio.1563 24974230; PubMed Central PMCID: PMC4106236.
58. Chesser AS, Pritchard SM, Johnson GV. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol. 2013;4:122. Epub 2013/09/13. doi: 10.3389/fneur.2013.00122 24027553; PubMed Central PMCID: PMC3759803.
59. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5. doi: 10.1126/science.1101738 15333840.
60. Wang X, D'Arcy P, Caulfield TR, Paulus A, Chitta K, Mohanty C, et al. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des. 2015;86(5):1036–48. Epub 2015/04/10. doi: 10.1111/cbdd.12571 25854145; PubMed Central PMCID: PMC4846425.
61. Wang X, Mazurkiewicz M, Hillert EK, Olofsson MH, Pierrou S, Hillertz P, et al. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep. 2016;6:26979. Epub 2016/06/07. doi: 10.1038/srep26979 27264969; PubMed Central PMCID: PMC4893612.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF