Methods for the identification of farm escapees in feral mink (Neovison vison) populations
Autoři:
Sussie Pagh aff001; Cino Pertoldi aff001; Heidi Huus Petersen aff003; Trine Hammer Jensen aff001; Mette Sif Hansen aff003; Sussi Madsen aff004; David Chr. Evar Kraft aff004; Niels Iversen aff001; Peter Roslev aff001; Mariann Chriel aff003
Působiště autorů:
Department of Chemistry and Bioscience—Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
aff001; Aalborg Zoo, Aalborg, Denmark
aff002; National Veterinary Institute, Technical University of Denmark, Kgs, Lyngby, Denmark
aff003; Department of Dentistry and Oral Health, University of Aarhus, Aarhus, Denmark
aff004
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224559
Souhrn
In Denmark, American mink (Neovison vison) have been bred for their fur since the mid-1920s. Mink escaping from farms may supply the feral population. Often, it is of biological and management interest to separate the population of feral mink (i.e. mink caught in the wild) in two groups: 1) mink born on farms i.e., escapees, and 2) mink born in the wild. In this study, two methods were used for separating feral mink into the two groups: a) Comparison of body length of farmed mink and feral mink, and b) Presence of a biomarker (tetracycline: an oral antibiotic used on mink farms). A total of 367 wild caught mink (from the mainland of Denmark and the island of Bornholm), and 147 mink from farms, collected during the period 2014–2018, were used for the analysis of body length. For the testing of tetracycline (TC) as a biomarker, 78 mink from farms where there was knowledge about TC treatment (with or without) were examined for fluorescent markings in the canine teeth. Results from both univariate analyses and Gaussian mixture model analysis demonstrated clear divisions between the mean body length (mean ± S.E., range) of farmed males (52.1 cm ± 0.4, 48–68) and farmed females (mean 44.0 ± 0.2, 40–50), and between farmed mink and wild caught mink. Mixture analysis identified two groups within each sex of the wild caught mink, one assigned to farmed mink (born in captivity) and another group of smaller mink suspected of being born in the wild. On Bornholm, the mean (±SD, range) length of males born in the wild was 43.7cm (± 0.3, 36–57) and for females 37.5cm (± 0.3, 32–45). The mean length (±SD, range) of males born in the wild in the mainland of Denmark was 42.5cm (± 2.3, 36–46) and for females 36.1cm (± 1.0, 34–37). Among the feral mink from mainland Denmark, 28.4% of males and 21.6% of females were identified as escapees, while 0% of the males and 1% of the females were identified as escapees among the wild caught mink on Bornholm. Eight percent of mink from farms using tetracycline were false negatives, while no false positives were found among mink from farms not using TC. TC fluorescence was found in five of 217 mink caught in the wild equivalent to 22% escapees in mainland Denmark. No TC markings were found in mink caught in the wild on Bornholm. In conclusion, both methods a) the body length of mink, and b) fluorescent biomarkers in canine teeth are considered as useful tools to identifing mink that have escaped from farms.
Klíčová slova:
Physiological parameters – Teeth – Islands – Biomarkers – Denmark – Invasive species – Tetracyclines – Danish people
Zdroje
1. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA. Biotic Invasions: Causes, Epidemiology, Global Consequences, and Control. Ecol Appl. 2000;10: 689–710. doi: 10.2307/2641039
2. McKinney ML, Lockwood JL. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends EcolEvol. 1999;14: 450–453. doi: 10.1016/S0169-5347(99)01679-1
3. Bonesi L, Palazon S. The American mink in Europe: Status, impacts, and control. Biol Conserv. 2007;134: 470– 483. doi: 10.1016/j.biocon.2006.09.006
4. Brzeziński M, Ignatiuk P, Żmihorski M, Zalewski A. An invasive predator affects habitat use by native prey: American mink and water vole co‐existence in riparian habitats. J Zool. 2018;304: 109–116. doi: 10.1111/jzo.12500
5. Macdonald RL. The impact of American mink Mustela vison and European mink Mustela lutreola on water voles Arvicola terrestris in Belarus. Ecography. 2002;25: 295–302. doi: //doi.org/10.1034/j.1600-0587.2002.250306.x
6. Banks Peter B., Norrdahl Kai, Nordström Mikael, Korpimäki Erkki. Dynamic Impacts of Feral Mink Predation on Vole Metapopulations in the Outer Archipelago of the Baltic Sea. Oikos. 2004;105: 79–88. doi: 10.1111/j.0030-1299.2004.12855.x
7. Melero Y, Palazón S, Lambin X. Invasive crayfish reduce food limitation of alien American mink and increase their resilience to control. Oecologia. 2014;174: 434.
8. Smal CM. Population studies on feral American mink Mustela vison in Ireland. J Zool. 1991;224: 233–249. doi: 10.1111/j.1469-7998.1991.tb04802.x
9. Hammershøj M, Thomsen E, Madsen A. Diet of free-ranging American mink and European polecat in Denmark. Acta Theriol. 2004;49: 337–347. doi: 10.1007/BF03192532
10. Zschille J, Heidecke D, Stubbe M. Distribution and ecology of feral American mink Mustela visonSchreber, 1777 (Carnivora, Mustelidae) in Saxony-Anhalt (in German); Hercynia N.F. 2004;37: 103–126.
11. Long JL. Introduced Mammals of the World: Their History, Distribution, and Influence. Victoria: Csiro Publishing; 2003.
12. Clausen J. Avlsdyrtælling 2018. Dansk Pelsavl. Fagblad for Danske Minkavlere. 2018; Juni: 24–28.
13. Baagøe H, Secher Jensen T, Naturhistorisk Museum, Zoologisk Museum. Dansk pattedyratlas. Kbh.: Gyldendal; 2007.
14. Hammershøj M, Travis JMJ, Stephenson CM. Incorporating evolutionary processes into a spatially-explicit model: exploring the consequences of mink-farm closures in Denmark. Ecography. 2006;29: 465–476.
15. Anonymous. Bekendtgørelse om husning af mink og hegning af minkfarme. Order 1422 of 03/12/2015 2015. https://www.retsinformation.dk/Forms/R0710.aspx?id = 31661. 2015.
16. Naturstyrelsen. Forvaltningsplan for mink (Neovison vison) i Danmark. Miljøministeriet. 2012: 44p.
17. Pertoldi C, Rødjajn S, Zalewski A, Demontis D, Loeschcke V, Kjærsgaard A. Population viability analysis of American mink (Neovison vison) escaped from Danish mink farms. J Anim Sci. 2013;91: 2530–2541. doi: 10.2527/jas.2012-6039 23478820
18. Christensen TK, Balsby TS, Mikkelsen P, Lauritzen T. Vildtudbyttestatistik og vingeundersøgelsen for jagtsæsonerne 2015/16 og 2016/17;Notat fra DCE—Nationalt Center for Miljø og Energi.
19. Hammershøj M, Pertoldi C, Asferg T, Bach Møller T, Bastian Kristensen N. Danish free-ranging mink populations consist mainly of farm animals: Evidence from microsatellite and stable isotope analyses. J Nat Conserv. 2005;13: 267–274. doi: //doi.org/10.1016/j.jnc.2005.03.001
20. Tamlin AL, Bowman J, Hackett D. Separating Wild from Domestic American Mink Neovison vison Based on Skull Morphometries. Wildl Biol (1 September 2009). 2009;15: 48–52.
21. Brzezinski M, Zalewski A, Niemczynowicz A, Jarzyna I, Suska-Malawska M. The use of chemical markers for the identification of farm escapees in feral mink populations. Ecotoxicology. 2014;23: 778.
22. Robardet E, Demerson J, Andrieu S, Cliquet F. First European interlaboratory comparison of tetracycline and age determination with red fox teeth following oral rabies vaccination programs. JWildl Dis. 2012;48: 858–868.
23. Williamson RA. Histological preparation of teeth and tooth growth. Oral Biology and Dentistry. 2015;3: 1–6. doi: 10.7243/2053-5775-3-3
24. Garshelis DL, Visser LG. Enumerating Megapopulations of Wild Bears with an Ingested Biomarker. The Journal of Wildlife Management. 1997;61: 466–480. doi: 10.2307/3802605
25. Bugnon P, Breitenmoser U, Peterhans E, Zanoni R. Efficacy of Oral Vaccination in the Final Stage of Fox Rabies Elimination in Switzerland. Journal of Veterinary Medicine, Series B. 2004;51: 433–437. doi: 10.1111/j.1439-0450.2004.00801.x 15606866
26. Anonymous. Bekendtgørelse om plasmacytose hos pelsdyr. BEK nr 1280 af 14/11/2018.
27. McLachlan GJ, Peel D. Robust cluster analysis via mixtures of multivariate t-distributions. In: Amin A., Dori D., Pudil P., Freeman H. (eds), Amin A, Dori D, Pudil P, Freeman H, editors. Advances in Pattern Recognition. SSPR /SPR 1998. Lecture Notes in Computer ScienceLecture Notes in Computer Science. Berlin, Heidelberg: Springer; 1998.
28. Kolb HH, Hewson R. Body size of the red fox (Vulpes vulpes) in Scotland. J Zool. 1974;173: 253–255.
29. Gortázar C, Travaini A, Delibes M. Habitat-related microgeographic body size variation in two Mediterranean populations of red fox (Vulpes vulpes). J Zool. 2000;250: 335–338. doi: 10.1111/j.1469-7998.2000.tb00778.x
30. Yom-Tov Y, Yom-Tov S, Baagøe H. Increase of skull size in the red fox (Vulpes vulpes) and Eurasian badger (Meles meles) in Denmark during the twentieth century: An effect of improved diet? Evol Ecol Res. 2003;5: 1037–1048.
31. Zalewski A, Bartoszewicz M. Phenotypic variation of an alien species in a new environment: the body size and diet of American mink over time and at local and continental scales. Biol J Linn Soc. 2012;105: 693.
32. Yom-Tov Y, Yom-Tov S, Barreiro J, Blanco JC. Body size of the red fox Vulpes vulpes in Spain: the effect of agriculture. Biol J Linn Soc. 2007;90: 729–734.
33. Pagh S, Hansen MS, Jensen B, Pertoldi C, Chriél M. Variability in body mass and sexual dimorphism in Danish red foxes (Vulpes vulpes) in relation to population density. Zool Ecol. 2018;28: 1–9. doi: 10.1080/21658005.2017.1409997
34. Lindström E. Condition and growth and Red Foxes (Vulpes vulpes) in relation to food supply. J of Zool. 1983;199: 117–122. doi: 10.1111/j.1469-7998.1983.tb06120.x
35. Baker PJ. Polygynandry in a red fox population: implications for the evolution of group living in canids? Behav Ecol. 2004;15: 766–778.
36. Zub K, Szafrańska PA, Konarzewski M, Speakman JR. Effect of energetic constraints on distribution and winter survival of weasel males. J Anim Ecol. 2011;80: 259–269. doi: 10.1111/j.1365-2656.2010.01762.x 21039480
37. Dayan T, Simberloff D. Character Displacement, Sexual Dimprphism, and Morphological Variation among British and Irish Mustelids. Ecology. 1994;75: 1063–1073. doi: 10.2307/1939430
38. Melero Y, Palazón S, Bonesi L, Gosàlbez J. Relative abundance of culled and not culled American mink populations in northeast Spain and their potential distribution: are culling campaigns effective? Biol Invasions. 2010;12: 3877–3885. doi: 10.1007/s10530-010-9778-8
39. Melero Y, Plaza M, Santulli G, Saavedra D, Gosàlbez J, Ruiz-Olmo J, et al. Evaluating the effect of American mink, an alien invasive species, on the abundance of a native community: is coexistence possible? Biodivers Conserv. 2012;21: 1809.
40. Price EO. Behavioral Aspects of Animal Domestication. Q Rev Biol. 1984;59: 1–32.
41. Zalewski A. Does size dimorphism reduce competition between sexes? The diet of male and female pine martens at local and wider geographical scales. Acta Theriol. 2007;52: 250.
42. Meiri Shai, Dayan Tamar, Simberloff Daniel. Variability and Sexual Size Dimorphism in Carnivores: Testing the Niche Variation Hypothesis. Ecology. 2005;86: 1432–1440. doi: 10.1890/04-1503
43. Meiri S, Kadison AE, Novosolov M, Pafilis P, Foufopoulos J, Itescu Y, et al. The number of competitor species is unlinked to sexual dimorphism. J Anim Ecol. 2014;83: 1302–1312. doi: 10.1111/1365-2656.12248 24813336
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF