Conjugated linoleic acid as a novel insecticide targeting the agricultural pest Leptinotarsa decemlineata
Autoři:
Justin Clements aff001; Russell L. Groves aff001; JoAnn Cava aff001; Caroline C. Barry aff002; Scott Chapman aff001; Jake M. Olson aff002
Působiště autorů:
Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
aff001; Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0220830
Souhrn
The Colorado Potato Beetle, Leptinotarsa decemlineata, is a major agricultural pest of solanaceous crops in the United States. Historically, a multitude of insecticides have been used to control problematic populations. Due to increasing resistance to insecticides, novel compounds and methodologies are warranted for the control of beetle populations. Mixed-isomer conjugated linoleic acid has been studied in-depth for its beneficial properties to mammalian systems. At the same time, studies have demonstrated that conjugated linoleic acid can manipulate fatty acid composition in non-mammalian systems, resulting in embryo mortality. Consequently, experiments were conducted to assess the effects of foliar-applied conjugated linoleic acid on larval growth, embryogenesis, and feeding preference in Colorado potato beetle. Both maternal and deterrent effects of dietary conjugated linoleic acid were assessed. Conjugated linoleic acid demonstrated desirable insecticidal properties, including increased larval mortality, slowed larval development, antifeedant effects, and decreased egg viability after maternal ingestion.
Klíčová slova:
Fatty acids – Leaves – Beetles – Larvae – Potato – Acetones – Weight gain – Insecticides
Zdroje
1. Alyokhin A., Baker M., Mota-Sanchez D., Dively G. & Grafius E. Colorado Potato Beetle Resistance to Insecticides. Am. J. Potato Res. 85, 395–413 (2008).
2. USDA. USDA National Agricultural Statistical Service Agricultural Chemical Use Program. https://www.nass.usda.gov/Statistics_by_Subject/result.php?0A31F480-595D-3405-8118-42E562D11F93§or=CROPS&group=VEGETABLES&comm=POTATOES (Accessed: 16th August 2018)
3. IRAC International MoA Working Group. IRAC Mode of Action Classification Scheme http://www.irac-online.org/documents/moa-classification/. (Accessed: 24th May 2017)
4. Huseth A. S., Groves R. L., Chapman S. A., Alyokhin A., Kuhar T.P., Macrae I.V., Szendrei Z., Nault B. A. Managing Colorado potato beetle insecticide resistance: New tools and strategies for the next decade of pest control in potato. J. Integ. Pest Mngmt. 5(4), (2014). http://dx.doi.org/10.1603/IPM14009
5. Blacquière T., Smagghe G., van Gestel C.A.M., Mommaerts V., Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology. 21, 973–992(2012). https://doi.org/10.1007/s10646-012-0863-x 22350105
6. Cresswell J.E. A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology. 20, 149–157 (2011). https://doi.org/10.1007/s10646-010-0566-0 21080222
7. Palli S.R. RNA interference in Colorado potato beetle: step toward development of dsRNA as a commercial insecticide. Current Opinion in Insect Science. 6, 1–6 (2014). doi: 10.1016/j.cois.2014.09.011 26705514
8. Šmid A. R., Kristina G., Jože B., Meti B.G., Janko K., Jana Ž., Jerica S. Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. Pesticide Biochemistry and Physiology. 122, 59–66 (2015). doi: 10.1016/j.pestbp.2014.12.022 26071808
9. Bretschneider T., Benet-Buchholz J., Fischer R., Nauen R. Spirodiclofen and Spiromesifen novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. International Journal for Chemistry 57(11) 697–701 (2003)
10. Parodi P., Yurawecz M. Conjugated linoleic acid: the early years. In: Advances in conjugated linoleic acid research. AOCS Press. Champaign IL. 1–11 (1999).
11. Butz D.E., Li G., Huebner S.M., Cook M.E. A mechanistic approach to understanding conjugated linoleic acid’s role in inflammation using murine models of rheumatoid arthritis. Am J Phys: Regul, Integ, and Comp Phys 293, 669–676 (2007).
12. Dilzer A., Park Y. Implication of conjugated linoleic acid (CLA) in human health. Crit Rev in Food Sci and Nutr 52, 488–513 (2012).
13. Fuke G., Nornberg J.L. Systematic evaluation on the effectiveness of conjugated linoleic acid in human health. Crit Rev in Food Sci and Nutr 57, 1–7 (2017)
14. Huebner S.M., Olson J.M., Campbell J.P., Bishop J.W., Crump P.M., Cook M.E. Dietary trans-10, cis-12 CLA reduces murine collagen-induced arthritis in a dose-dependent manner. J of Nutr 144, 177–184 (2014).
15. Muhlenbeck J.A., Butz D.E., Olson J.M., Uribe-Cano D., Cook M.E. Dietary conjugated linoleic acid c9t11 prevents collagen-induced arthritis, whereas conjugated linoleic acid t10c12 increases arthritic severity. Lipids 52, 303–314 (2017). doi: 10.1007/s11745-017-4241-6 28299528
16. Olson J.M., Haas A.W., Lor J., McKee H.S., Cook M.E. A comparison of the anti-inflammatory effects of cis-9, trans-11 conjugated linoleic acid to celecoxib in the collagen-induced arthritis model. Lipids 52, 151–159 (2017). doi: 10.1007/s11745-016-4228-8 28078603
17. Park Y., Pariza M.W. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res Int 40, 311–323 (2007).
18. Viladomiu M., Hontecillas R., Bassaganya-Riera J. Modulation of inflammation and immunity by dietary conjugated linoleic acid. Euro J Pharmacol 785, 87–95 (2016).
19. Yang B., Chen H., Stanton C., Ross R.P, Zhang H., Chen Y.Q, Chen W. Review of the roles of conjugated linoleic acid in health and disease. J Functional Foods 15, 314–325 (2015).
20. Gereszek L.J, Coats J.R, Beitz D.C. Effects of dietary conjugated linoleic acid on European corn borer (Lepidoptera crambidae) survival, fatty acid profile, and fecundity. Ann Entomol Soc Am 101, 430–438 (2008).
21. Lee, K.N. Conjugated linoleic acid and lipid metabolism. Doctoral thesis. University of Wisconsin-Madison, WI (1996).
22. Aydin R., Pariza M.W., Cook M.E. Role of dietary oils in prevention of CLA-induced chick embryonic mortality and egg properties. FASEB J. 13: A541. (1999)
23. Park C.G., Park G.B., Kim Y.S., Min D.B., Ha Y.L. Production of Silkworms with Conjugated Linoleic Acid (CLA) Incorporated into Their Lipids by Dietary CLA. J Agric Food Chem 6572–7 (2006).
24. Park C.G, Kim S.J., Ha Y.L. Dietary conjugated linoleic acid (CLA) in house fly, musca domestica, with no adverse effects on development. J Asia Pac Entomol 3, 59–64 (2000).
25. Yu, J.Y. The Toxicology and Biochemistry of Insecticides. CRC Press (2015).
26. Clements J., Schoville S., Peterson N., Lan Q., Groves R. L. Characterizing Molecular Mechanisms of Imidacloprid Resistance in Select Populations of Leptinotarsa decemlineata in the Central Sands Region of Wisconsin. PLOS ONE 11, e0147844 (2016). doi: 10.1371/journal.pone.0147844 26821361
27. Huseth A. S., Groves R. L. Effect of insecticide management history on emergence phenology and neonicotinoid resistance in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J. Econ. Entomol. 106, 2491–2505 (2013). doi: 10.1603/ec13277 24498751
28. Boiteau, G., Blanc, J. R. L. Colorado potato beetle LIFE STAGES. (1992) Agriculture Canada. 1878/E
29. Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226, 497–509 (1957). 13428781
30. Christie W.W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J Lipid Res 23, 1072–1075 (1982). 6897259
31. Politz M., Lennen R., Pfleger B. Quantification of bacterial fatty acids by extraction and methylation. Bio-protocol 3, e950. 27540560
32. Huebner S.M., Campbell J.P., Butz DE, Fulmer T.G., Gendron-Fitzpatrick A., Cook M.E. Individual isomers of conjugated linoleic acid reduce inflammation associated with established collagen-induced arthritis in DBA/1 mice. J Nutr 140, 1454–61 (2010). doi: 10.3945/jn.109.120527 20573944
33. Whalon, M., Mota-Sanchez, D. Arthropod Pesticide Resistance Database. Leptinotarsa decemlineata http://www.pesticideresistance.org/display.php?page=species&arId=141. (Accessed: 25th May 2017)
34. Szafranek B., Synak E., Waligóra D., Szafranek J., Nawrotn J. Leaf surface compounds of the potato (Solanum tuberosum) and their influence on Colorado potato beetle (Leptinotarsa decemlineata) feeding. Chemoecology. 18, 205–16 (2008).
35. Lee K.N, Pariza M.W, Ntambi JM. Conjugated linoleic acid decreases hepatic stearoyl-CoA desaturase and mRNA expression. Biochem Biophys Res Comm 248, 817–821 (1998). doi: 10.1006/bbrc.1998.8994 9704011
36. Twibell R.G., Watkins B.A., Rogers L., Brown P.B. Effects of dietary conjugated linoleic acids on hepatic and muscle lipids in hybrid striped bass. Lipids 35, 155–161 (2000). doi: 10.1007/bf02664765 10757546
37. Shang X.G., Wang D.F., Li J.D., Yin X.J., Li X.J., Yi G.F. Effect of dietary conjugated linoleic acid on the fatty acid composition of egg yolk, plasma and liver as well as hepatic stearoyl-coenzyme A desaturase activity and gene expression in laying hens. Poultry Sci 84, 1886–1892 (2005).
38. Aydin R., Pariza M.W., Cook M.E. Olive Oil Prevents the Adverse Effects of Dietary Conjugated Linoleic Acid on Chick Hatchability and Egg Quality. J Nutr 131,800–806. (2001) doi: 10.1093/jn/131.3.800 11238762
39. Aydin R., Cook M.E. The Effect of Dietary Conjugated Linoleic Acid on Egg Yolk Fatty Acids and Hatchability in Japanese Quail. Poult Sci 83,2016–2022. (2004) doi: 10.1093/ps/83.12.2016 15615015
40. Aydin R., Cook M.E. Maternal dietary conjugated linoleic acid is not directly toxic for the developing chick embryo, but causes embryo mortality by altering fatty acid composition of the egg yolk in the chicken. J Sci Food Agric 89,2687–2691 (2009) doi: 10.1002/jsfa.3755
41. Cripps C., Blomquist G.J., Renobales M. De novo biosynthesis of linoleic acid in insects. Biochim Biophys Acta—Lipids Lipid Metab 876,572–580. (1986) doi: 10.1016/0005-2760(86)90046-9
42. Krzymańska J. The Influence of Linoleic and Linolenic Acids on the Development and on the Lipid Metabolism of the Colorado Potato Beetle (Leptinotarsa Decemlineata Say). Symp Biol Hung 16, 129–132 (1976).
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF