Characterization of two thermophilic cellulases from Talaromyces leycettanus JCM12802 and their synergistic action on cellulose hydrolysis
Autoři:
Yuan Gu aff001; Fei Zheng aff001; Yuan Wang aff001; Xiaoyun Su aff001; Yingguo Bai aff001; Bin Yao aff001; Huoqing Huang aff001; Huiying Luo aff001
Působiště autorů:
Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
aff001; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People’s Republic of China
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224803
Souhrn
Talaromyces leycettanus JCM12802 is a great producer of thermophilic glycoside hydrolases (GHs). In this study, two cellulases (TlCel5A and TlCel6A) belonging to GH5 and GH6 respectively were expressed in Pichia pastoris and functionally characterized. The enzymes had acidic and thermophilic properties, showing optimal activities at pH 3.5–4.5 and 75–80°C, and retained stable at temperatures up to 60°C and over a broad pH range of 2.0−8.0. TlCel5A and TlCel6A acted against several cellulose substrates with varied activities (3,101.1 vs. 92.9 U/mg to barley β-glucan, 3,905.6 U/mg vs. 109.0 U/mg to lichenan, and 840.3 and 0.09 U/mg to CMC-Na). When using Avicel, phosphoric acid swollen cellulose (PASC) or steam-exploded corn straw (SECS) as the substrate, combination of TlCel5A and TlCel6A showed significant synergistic action, releasing more reduced sugars (1.08–2.87 mM) than the individual enzymes. These two cellulases may represent potential enzyme additives for the efficient biomass conversion and bioethanol production.
Klíčová slova:
Sequence alignment – Glucose – Cellulose – Multiple alignment calculation – Hydrolysis – Barley – Cellulases – Lichenology
Zdroje
1. Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. Advances in Adv Biochem Eng Biot. 2007; 108: 95–120.
2. Wonganu B, Pootanakit K, Boonyapakron K, Champreda V, Tanapongpipat S, Eurwilaichitr L. Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expres Purif. 2008; 58(1): 78–86.
3. Touijer H, Benchemsi N, Ettayebi M, Janati A, Chaouni B, Bekkari H. Thermostable Cellulases from the Yeast Trichosporon sp. Enzyme research. 2019;1–6
4. Baramee S, Teeravivattanakit T, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, et al. A novel GH6 cellobiohydrolase from Paenibacillus curdlanolyticus B-6 and its synergistic action on cellulose degradation. Applied Microbiology & Biotechnology. 2017; 101(3): 1175–1188.
5. Liu J, Liu WD, Zhao XL, Shen WJ, Cao H, Cui ZL. Cloning and functional characterization of a novel endo-β-1,4-glucanase gene from a soil-derived metagenomic library. Applied Microbiology & Biotechnology. 2011; 89(4): 1083–1092.
6. Kamal S, Khan SU, Muhammad N, Shoaib M, Omar M, Kaneza P, et al. Insights on heterologous expression of fungal cellulases in Pichia pastoris. Biochemistry and Molecular Biology. 2018; 3(1): 15–35.
7. Druzhinina IS, Kubicek CP. Genetic engineering of Trichoderma reesei cellulases and their production. Microbial biotechnology. 2017; 10(6):1485–1499. doi: 10.1111/1751-7915.12726 28557371
8. Boonvitthya N, Bozonnet S, Burapatana V, O'Donohue MJ, Chulalaksananukul W. Comparison of the heterologous expression of Trichoderma reesei endoglucanase II and cellobiohydrolase II in the yeasts Pichia pastoris and Yarrowia lipolytica. Molecular Biotechnology.2013; 54(2): 158–169. doi: 10.1007/s12033-012-9557-0 22638966
9. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, et al. Fungal Cellulases. Chemical Reviews. 2015;115(3): 1308–1448. doi: 10.1021/cr500351c 25629559
10. Fusco FA, Ronca R, Fiorentino G, Pedone E, Contursi P, Bartolucci S, Limauro D. Biochemical characterization of a thermostable endomannanase / endoglucanase from Dictyoglomus turgidum. Extremophiles. 2018; 22(1): 131–140. doi: 10.1007/s00792-017-0983-6 29177717
11. Rattu G, Joshi S, Satyanarayana T. Bifunctional recombinant cellulase-xylanase (rBhcell-xyl) from the polyextremophilic bacterium Bacillus halodurans TSLV1 and its utility in valorization of renewable agro-residues. Extremophiles. 2016; 20(6): 831–842. doi: 10.1007/s00792-016-0870-6 27558695
12. Wang K, Luo H, Bai Y, Shi P, Huang H, Xue XL, et al. A thermophilic endo-1,4-β-glucanase from Talaromyces emersonii CBS394.64 with broad substrate specificity and great application potentials. Applied Microbiology & Biotechnology. 2014; 98(16): 7051–7060.
13. Badino SF, Kari J, Christensen SJ, Borch K, Westh P. Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics. 2017; 1865(12): 1739–1745.
14. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnology Advances. 2000; 18(5): 355–383. 14538100
15. Kamal S, Khan SU, Khan S, Shoaib M, Khan H, Man S, et al. Recent view on heterologous expression of thermostable fungal cellulases, focused on expression factory of Pichia Pastoris. International Journal of Basic Medical Sciences and Pharmacy. 2018; 7(2), 43–57.
16. Sharma A, Tewari R, Rana SS, Soni R, Soni SK. Cellulases: classification, methods of determination and industrial applications. Applied Biochemistry & Biotechnology. 2016; 179(8): 1346–1380.
17. Hong J, Tamaki H, Yamamoto K, Kumagai H. Cloning of a gene encoding a thermo-stable endo-β-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnology Letters. 2003; 25(8): 657–661. 12882162
18. Takada G, Kawasaki M, Kitawaki M, Kawaguchi T, Sumitani J, Izumori K. Cloning and transcription analysis of the Aspergillus aculeatus No. F-50 endoglucanase 2 (cmc2) gene. J Biosci Bioeng. 2000; 94(5):482–485.
19. Li B, Walton JD. Functional diversity for biomass deconstruction in family 5 subfamily 5 (GH5_5) of fungal endo-β1,4-glucanases. Applied Microbiology & Biotechnology. 2017; 101(10): 1–9.
20. Westh P, Borch K, Sørensen T, Tokin R, Kari J, Badino S, et al. Thermoactivation of a cellobiohydrolase. Biotechnology & Bioengineering. 2017; 115(4): 831–838.
21. Li D C, Papageorgiou A C. Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzyme Research. 2019; 395–417.
22. Xu X, Fan C, Song L, Li J, Chen Y, Zhang Y, et al. A novel CreA-mediated regulation mechanism of cellulase expression in the thermophilic fungus Humicola insolens. International Journal of Molecular Sciences. 2019; 20(15): 3693.
23. Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology & Molecular Biology Reviews Mmbr. 2001; 65(1): 1–43.
24. Shi R, Li Z, Ye Q, Xu J, Liu Y. Heterologous expression and characterization of a novel thermo-halotolerant endoglucanase Cel5H from Dictyoglomus thermophilum. Bioresource Technology. 2013; 142: 338–344. doi: 10.1016/j.biortech.2013.05.037 23747445
25. De Almeida MN, Falkoski DL, Guimarães VM, Ramos HJ, Visser EM, Maitan-Alfenas GP, et al. Characteristics of free endoglucanase and glycosidases multienzyme complex from Fusarium verticillioides. Bioresource Technology.2013; 143: 413–422. doi: 10.1016/j.biortech.2013.06.021 23819978
26. Song J, Liu B, Liu Z, Yang Q. Cloning of two cellobiohydrolase genes from Trichoderma viride and heterogeneous expression in yeast Saccharomyces cerevisiae. Molecular Biology Reports. 2010; 37(4): 2135–2140. doi: 10.1007/s11033-009-9683-3 19669931
27. Wang C, Luo H, Niu C, Shi P, Huang H, et al. Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Applied Microbiology & Biotechnology. 2015; 99(3): 1217–1228.
28. Xia W, Lu H, Xia M, Cui Y, Bai Y, et al. A novel glycoside hydrolase family 113 Endo-β-1,4-mannanase from Alicyclobacillus sp. Strain A4 and insight into the substrate recognition and catalytic mechanism of this family. Applied & Environmental Microbiology. 2016; 82(9): 2718–2727.
29. Wang W, Chen Y, Wei DZ. Copper-mediated on-off control of gene expression in filamentous fungus Trichoderma reesei. Journal of Microbiological Methods. 2017; 143: 63–65. doi: 10.1016/j.mimet.2017.10.006 29055726
30. Fang H, Zhao R, Li CF, Zhao C. Simultaneous enhancement of the beta–exo synergism and exo–exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability. Microbial Cell Factories. 2019; 18(1): 9–23. doi: 10.1186/s12934-019-1060-x 30657063
31. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21): 2947–2948. doi: 10.1093/bioinformatics/btm404 17846036
32. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research. 2014; 42: W320–W324. doi: 10.1093/nar/gku316 24753421
33. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Tobias S, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research. 2014; 42: W252–W258. doi: 10.1093/nar/gku340 24782522
34. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997; 18(15): 2714–2723. doi: 10.1002/elps.1150181505 9504803
35. Miller G. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. 1969; 31(3): 426–428.
36. Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, et al. Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl Environ Microb. 2013; 79(14):4220–4229.
37. Qin Y, Wei X, Song X, Qu Y. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol. 2008; 135(2):190–195. doi: 10.1016/j.jbiotec.2008.03.016 18468710
38. Krogh KBRM, Kastberg H, Jørgensen CI, Berlin A, Harris PV, Olsson L. Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins. Enzyme & Microbial Technology. 2009; 44(6): 359–367.
39. Yan J, Liu W, Li Y, Lai HL, Zheng Y, Huang WJ, et al. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase. Biochemical & Biophysical Research Communications. 2016; 475(1): 8–12.
40. Gao L, Wang F, Gao F, Wang L, Zhao J, Qu Y. Purification and characterization of a novel cellobiohydrolase (PdCel6A) from Penicillium decumbens JU-A10 for bioethanol production. Bioresource Technol. 2011; 102(17):8339–8342.
41. Limam F, Chaabouni SE, Ghrir R, Marzouki N. Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: Purification and properties. Enzyme Microb Tech 1995;17(4):340–346.
42. Chir JL, Wan CF, Chou CH, Wu AT. Hydrolysis of cellulose in synergistic mixtures of β-glucosidase and endo/exocellulase Cel9A from Thermobifida fusca. Biotechnol Lett. 2011; 33(4):777–782. doi: 10.1007/s10529-010-0500-9 21188618
43. Medve J, Ståhlberg J, Tjerneld F. Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng. 1994; 44(9):1064–1073. doi: 10.1002/bit.260440907 18623023
44. Sakon J, Irwin D, Wilson DB, Karplus PA. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol. 1997; 4(10):810–818. doi: 10.1038/nsb1097-810 9334746
45. Zhang YH, Lynd LR. Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars. Applied Microbiology & Biotechnology. 2006; 70(1): 123–129.
46. Kostylev M, Alahuhta M, Chen M, Brunecky R, Himmel ME, Lunin VVet al. Cel48A from Thermobifida fusca: structure and site directed mutagenesis of key residues. Biotechnology & Bioengineering.2014; 111(4): 664–673.
47. Gusakov AV, Dotsenko AS, Rozhkova AM, Sinitsyn AP N-Linked glycans are an important component of the processive machinery of cellobiohydrolases. Biochimie. 2017; 132: 102–108. doi: 10.1016/j.biochi.2016.11.004 27856189
48. Amore A, Knott BC, Supekar NT, Shajahan A, Azadi P, Zhao P, et al. Distinct roles of N- and O-glycans in cellulase activity and stability. Proceedings of the National Academy of Sciences of the United States of America. 2017; 114(52): 13667–13672. doi: 10.1073/pnas.1714249114 29229855
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF