Association between serum homocysteine level and cognitive function in middle-aged type 2 diabetes mellitus patients
Autoři:
Johanda Damanik aff001; Andre Mayza aff002; Andhika Rachman aff003; Rani Sauriasari aff004; Melly Kristanti aff005; Putri Syahida Agustina aff004; Alexander Randy Angianto aff001; Pukovisa Prawiroharjo aff002; Em Yunir aff005
Působiště autorů:
Department of Internal Medicine, Faculty of Medicine Universitas Indonesia – Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
aff001; Department of Neurology, Faculty of Medicine Universitas Indonesia – Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
aff002; Department of Internal Medicine, Division of Haematology and Medical Oncology, Faculty of Medicine Universitas Indonesia – Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
aff003; Faculty of Pharmacy, Universitas Indonesia, Jakarta, Indonesia
aff004; Department of Internal Medicine, Division of Endocrinology and Metabolism, Faculty of Medicine Universitas Indonesia – Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
aff005
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224611
Souhrn
Type-2 diabetes mellitus (T2DM) is strongly associated with various complications, including cognitive impairment. Diabetic complication is related with structural and functional changes of brain. Studies investigated that homocysteine as an independent risk factor of several organ complications. This marker might have a role in pathogenesis of cognitive impairment in T2DM patients. We aimed to know the association between serum homocysteine level and cognitive impairment in middle-aged T2DM populations. The study was a cross-sectional study involving 97 T2DM patients aged <60 years old. Cognitive assessment was based on validated Indonesian version of Montreal Cognitive Assessment (MoCA-INA) test. Besides, serum homocysteine level (Hcy) was measured based on standard laboratory assay. Filling out the questionnaire of MoCA-INA was conducted when patients came to take the blood sample. This study used independent t-test, chi-square and multivariate logistic regression model to analyze the data. There were 47 subjects (48.5%) with mild cognitive impairment (MCI). Delayed recall was the most impaired domain (94.8%). There was no significant mean difference of serum Hcy level in MCI and non-MCI group (11.99±3.27 μmol/L vs 12.36±4.07 μmol/L respectively, p = 0.62). Final model of logistic regression showed no association between serum Hcy and cognitive function after adjusting confounding variables (OR: 1.778; 95%CI: 0.69–4.54). Further investigation involving slight elderly T2DM patients with larger sample size should be conducted to confirm this finding.
Klíčová slova:
Body Mass Index – Cognitive impairment – Cholesterol – Hypertension
Zdroje
1. Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta—Mol Basis Dis [Internet]. 2017;1863(5):1078–89. Available from: http://dx.doi.org/10.1016/j.bbadis.2016.08.018 27567931
2. Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci. 2015;1353(1):60–71.
3. De la Monte S. Relationship between diabetes & cognitive impairment. Endocrinol Metab Clin North Am. 2014;43(1):245–67. doi: 10.1016/j.ecl.2013.09.006 24582101
4. Umegaki H. Type 2 diabetes as a risk factor for cognitive impairment : current insights. Clin Interv Aging. 2014;9:1011–9. doi: 10.2147/CIA.S48926 25061284
5. Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: What can we learn from MRI? Diabetes. 2014;63(7):2244–52. doi: 10.2337/db14-0348 24931032
6. Reijmer YD, Brundel M, De Bresser J, Kappelle LJ, Leemans A, Biessels GJ. Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes: A diffusion tensor imaging study. Diabetes Care. 2013;36(1):137–44. doi: 10.2337/dc12-0493 22961577
7. Zhang Y, Zhang X, Zhang J, Liu C, Yuan Q, Yin X, et al. Gray matter volume abnormalities in type 2 diabetes mellitus with and without mild cognitive impairment. Neurosci Lett [Internet]. 2014;562:1–6. Available from: http://dx.doi.org/10.1016/j.neulet.2014.01.006 24434688
8. Ryan JP, Fine DF, Rosano C. Type 2 diabetes and cognitive impairment: Contributions from neuroimaging. J Geriatr Psychiatry Neurol. 2014;27(1):47–55. doi: 10.1177/0891988713516543 24394151
9. Qiu C, Sigurdsson S, Zhang Q, Jonsdottir MK, Kjartansson O, Eiriksdottir G, et al. Diabetes, markers of brain pathology and cognitive function: The Age, Gene/Environment Susceptibility-Reykjavik Study. Ann Neurol. 2014;75(1):138–46. doi: 10.1002/ana.24063 24243491
10. Barbagallo M. Type 2 diabetes mellitus and Alzheimer’s disease. World J Diabetes [Internet]. 2014;5(6):889. Available from: http://www.wjgnet.com/1948-9358/full/v5/i6/889.htm 25512792
11. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16(11):660–71. doi: 10.1038/nrn4019 26462756
12. Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med [Internet]. 2015;47(3):e149. Available from: http://dx.doi.org/10.1038/emm.2015.3
13. Mayeda ER, Haan MN, Kanaya AM, Yaffe K, Neuhaus J. Type 2 diabetes and 10-year risk of dementia and cognitive impairment among older Mexican Americans. Diabetes Care. 2013;36(9):2600–6. doi: 10.2337/dc12-2158 23514732
14. Deary IJ, Corley J, Gow AJ, Harris SE, Houlihan M, Marioni RE, et al. Age-associated cognitive decline. Br Med Bull. 2019;92:135–52.
15. Morris JK, Vidoni ED, Honea RA, Burns JM. Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol Aging [Internet]. 2014;35(3):585–9. Available from: http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.033 24411018
16. Murray A, Hsu F, Williamson J, Bryan R, Gertstein H, Sullivan M, et al. Accordion Mind: results of the observational extension of the Accord Mind randomisectrial. Diabetologia. 2017;60(1):69–80. doi: 10.1007/s00125-016-4118-x 27766347
17. Ebesunun MO, Obajobi EO. Elevated plasma homocysteine in type 2 diabetes mellitus: A risk factor for cardiovascular diseases. Pan Afr Med J. 2012;12(1):1–8.
18. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14(1):1–10.
19. Ansari R, Mahta A, Mallack E, Luo J. Hyperhomocysteinemia and Neurologic Disorders: a Review. 2014;10(4):281–8.
20. Setién-Suero E, Suárez-Pinilla M, Suárez-Pinilla P, Crespo-Facorro B, Ayesa-Arriola R. Homocysteine and cognition: A systematic review of 111 studies. Neurosci Biobehav Rev [Internet]. 2016;69:280–98. Available from: http://dx.doi.org/10.1016/j.neubiorev.2016.08.014 27531233
21. Schalinske KL, Smazal AL. Homocysteine Imbalance: a Pathological Metabolic Marker. Adv Nutr An Int Rev J [Internet]. 2012;3(6):755–62. Available from: http://advances.nutrition.org/cgi/doi/10.3945/an.112.002758
22. Masuda Y, Kubo A, Kokaze A, Yoshida M, Fukuhara N, Takashima Y. Factors associated with serum total homocysteine level in type 2 diabetes. Environ Health Prev Med. 2008;13(3):148–55. doi: 10.1007/s12199-008-0024-2 19568899
23. Mcdowell I, Lang D. Homocysteine and endothelial dysfunction: a link with cardiovascular disease. J Nutr. 2000;130:369–72.
24. Shaikh MK, Devrajani BR, Shaikh A, Shah SZA, Shaikh S S D. Plasma homocysteine level in patients with diabetes mellitus. World Appl Sci J. 2012;63(6):1158–63.
25. Huang T, Ren JJ, Huang J, Li D. Association of homocysteine with type 2 diabetes: A meta-analysis implementing Mendelian randomization approach. BMC Genomics. 2013;14(1).
26. Reitz C, Tang MX, Miller J, Green R, Luchsinger JA. Plasma homocysteine and risk of mild cognitive impairment. Dement Geriatr Cogn Disord. 2009;27(1):11–7. doi: 10.1159/000182421 19088473
27. Tian S, Han J, Huang R, Sun J, Cai R, Shen Y, et al. Increased Plasma Homocysteine Level is Associated with Executive Dysfunction in Type 2 Diabetic Patients with Mild Cognitive Impairment. J Alzheimer’s Dis. 2017;58(4):1163–73.
28. Perkumpulan Endokrinologi Indonesia. Panduan Pengelolaan Dislipidemia di Indonesia. PB PERKENI. Jakarta; 2015.
29. Inoue M, Nakasuji M, Kawasaki A, Nagai M, Miyata T, Imanaka N, et al. CKD Associates with Cognitive Decline. Japanese J Anesthesiol. 2015;64(8):833–6.
30. Tamura MK, Yaffe K. Dementia and cognitive impairment in ESRD: Diagnostic and therapeutic strategies. Kidney Int [Internet]. 2011;79(1):14–22. Available from: http://dx.doi.org/10.1038/ki.2010.336 20861818
31. Cooper C, Sommerlad A, Lyketsos C, Livingston G. Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Psychiatry. 2015;172:323–34.
32. Bajaj JS, Schubert CM, Heuman D, Wade JB, Gibson DP, Topaz A, et al. Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Gastroenterology. 2010;138(7):2332–40. doi: 10.1053/j.gastro.2010.02.015 20178797
33. Bostom A, Lathrop L. Hyperhomocysteinemia in end-stage renal disease: prevalence, etiology, and potential relationship to arteriosclerotic outcomes. Kidney Int. 1997;52:10–20. doi: 10.1038/ki.1997.298 9211341
34. Refsum H, Smith A, Ueland P, Nexo E, Clarke R, Mcpartlin J, et al. Facts and recommendations about total homocysteine determinations : an expert opinion. Clin Chem. 2014;50(1):3–32.
35. Silveira CRA, Roy EA, Almeida QJ. Acute effects of aerobic exercise on cognitive function in individuals with Parkinson’s disease. Neurosci Lett. 2018;671:60–5. doi: 10.1016/j.neulet.2018.01.056 29408547
36. James P, Oparil S, Carter B, Cushman W, Himmelfarb C, Handler J, et al. 2014 evidence-guideline for the management of high blood pressure in adults: report from the panel member appointed to the eight Joint National Committe (JNC 8). J Intern Med Taiwan. 2014;25(3):165–75.
37. Cefalu W. Standards of medical care in diabetes 2017. Am Diabetes Assoc. 2017;40(1).
38. Alves L, Freitas S, Simões MR, Vicente M, Santana I. Montreal cognitive assessment (MoCA): Validation study for frontotemporal dementia. J Int Neuropsychol Soc. 2012;25(3):146–54.
39. Lee J, Lee DW, Cho S, Na DL, Jeon HJ, Kim S, et al. Brief Screening for Mild Cognitive Impairment in Elderly Outpatient Clinic : Validation of the Korean. J Geriatr Psychiatry Neurol. 2008;21(2):104–10.
40. Cumming TB, Churilov L, Linden T, Bernhardt J. Montreal cognitive assessment and mini-mental state examination are both valid cognitive tools in stroke. Acta Neurol Scand. 2013;128(2):122–9. doi: 10.1111/ane.12084 23425001
41. Roalf DR, Moberg PJ, Xie SX, Wolk DA, Moelter ST, Arnold SE. Comparative accuracies of two common screening instruments for classification of Alzheimer’s disease, mild cognitive impairment, and healthy aging. Alzheimer’s Dement [Internet]. 2013;9(5):529–37. Available from: http://dx.doi.org/10.1016/j.jalz.2012.10.001
42. Husein N, Lumempouw S, Ramli Y, Herqutanto. Validation study of Indonesian version Montreal cognitive assessment (MoCA-Ina) for mild cognitive impairment screening. Neurona. 2010;27(4):15–23.
43. Langlois F, Minh Vu TT, Chassé K, Dupuis G, Kergoat M-J, Bherer L. Benefits of Physical Exercise on Cognition & QoL in Older Adults. Journals Gerontol Ser B Psychol Sci Soc Sci [Internet]. 2012;68(3):400–4. Available from: http://library.rochester.edu
44. Aslan AKD, Starr JM, Pattie A, Deary I. Cognitive consequences of overweight and obesity in the ninth decade of life? Age Ageing. 2015;44:59–65. doi: 10.1093/ageing/afu108 25249169
45. Angevaren M, Aufdemkampe G, Verhaar HJJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008;(2).
46. Wang C, Chan JSY, Ren L, Yan JH. Obesity Reduces Cognitive and Motor Functions across the Lifespan. 2015;2016:1–3.
47. Sadeghi O, Askari G, Maghsoudi Z, Nasiri M, Khorvsah F, Ghiasvand R. Association of general obesity with Hyperhomocysteinemia in Migrain Patients. Jundishapur J Chronic Dis Care [Internet]. 2015;4(1). Available from: http://jjchronic.com/en/articles/21734.html
48. Sengwayo D, Moraba M, Motaung S. Association of homocysteinaemia with hyperglycaemia, dyslipidaemia, hypertension and obesity : cardiovascular topic. Cardiovasc J Afr [Internet]. 2013;24(7):265–9. Available from: http://www.cvja.co.za/onlinejournal/vol24/vol24_issue7/#23/z
49. Deminice R, Ribeiro DF, Frajacomo FTT. The effects of acute exercise and exercise training on plasma homocysteine: A meta-analysis. PLoS One. 2016;11(3):1–17.
50. Malaguarnerra G, Gagliano C, Giordano M, Salomone S, Vacante M, Bucolo C, et al. Homocysteine serum level in diabetic patients with non-proliferative, proliferative and without retinopathy. Biomed Res Int. 2014;2014:1–14.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF