Population productivity of shovelnose rays: Inferring the potential for recovery
Autoři:
Brooke M. D’Alberto aff001; John K. Carlson aff003; Sebastián A. Pardo aff004; Colin A. Simpfendorfer aff001
Působiště autorů:
Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
aff001; CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
aff002; NOAA/National Marine Fisheries Service–Southeast Fisheries Science Center, Panama City, FL, United States of America
aff003; Biology Department, Dalhousie University, Halifax, NS, Canada
aff004
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225183
Souhrn
There is recent evidence of widespread declines of shovelnose ray populations (Order Rhinopristiformes) in heavily fished regions. These declines, which are likely driven by high demand for their fins in Asian markets, raises concern about their risk of over-exploitation and extinction. Using life-history theory and incorporating uncertainty into a modified Euler-Lotka model, the maximum intrinsic rates of population increase (rmax) were estimated for nine species from four families of Rhinopristiformes, using four different natural mortality estimators. Estimates of mean rmax, across the different natural mortality methods, varied from 0.03 to 0.59 year-1 among the nine species, but generally increased with increasing maximum size. Comparing these estimates to rmax values for other species of chondrichthyans, the species Rhynchobatus australiae, Glaucostegus typus, and Glaucostegus cemiculus were relatively productive, while most species from Rhinobatidae and Trygonorrhinidae had relatively low rmax values. If the demand for their high-value products can be addressed then population recovery for some species is likely possible, but will vary depending on the species.
Klíčová slova:
Physiological parameters – Death rates – Population growth – Chondrichthyes – Elasmobranchii – Conservation science – Fisheries – International trade
Zdroje
1. Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, et al. Extinction risk and conservation of the world's sharks and rays. Elife. 2014;3:e00590. Epub 2014/01/23. doi: 10.7554/eLife.00590 24448405; PubMed Central PMCID: PMC3897121.
2. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK. Patterns and ecosystem consequences of shark declines in the ocean. Ecology Letters. 2010;13(8):1055–71. Epub 2010/06/10. doi: 10.1111/j.1461-0248.2010.01489.x 20528897.
3. Heithaus MR, Frid A, Wirsing AJ, Worm B. Predicting ecological consequences of marine top predator declines. Trends in Ecology & Evolution. 2008;23(4):202–10.
4. Stevens JD, Walker TI, Cook SF, Fordham SV. Threats faced by chondrichthyan fish. In: Stevens JC, Simpfendorfer CA, Francis MP, editors. Sharks, rays and chimaeras: the status of the Chondrichthyan fishes: status survey and conservation action plan. Gland, Switzerland: IUCN SSC Shark Specialist Group; 2005. p. 48–54.
5. Cortés E. Life History Patterns and Correlations in Sharks. Reviews in Fisheries Science. 2000;8(4):299–344. doi: 10.1080/10408340308951115
6. Fowler SL, Reed TM, Dipper FA. Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997. Group ISSS, editor. Gland, Switzerland and Cambridge, UK: IUCN 2002. 258 p.
7. Clarke SC, McAllister MK, Milner-Gulland EJ, Kirkwood GP, Michielsens CG, Agnew DJ, et al. Global estimates of shark catches using trade records from commercial markets. Ecology Letters. 2006;9(10):1115–26. Epub 2006/09/16. doi: 10.1111/j.1461-0248.2006.00968.x 16972875.
8. Dulvy NK, Simpfendorfer CA, Davidson LNK, Fordham SV, Brautigam A, Sant G, et al. Challenges and Priorities in Shark and Ray Conservation. Current Biology. 2017;27(11):R565–R72. Epub 2017/06/07. doi: 10.1016/j.cub.2017.04.038 28586694.
9. Oliver S, Braccini M, Newman SJ, Harvey ES. Global patterns in the bycatch of sharks and rays. Marine Policy. 2015;54:86–97.
10. Lack M, Sant G. Trends in global shark catch and recent developments in management. Cambridge, UK: 2009.
11. Clarke SC, Milner-Gulland EJ, Bjørndal T. Social, economic, and regulatory drivers of the shark fin trade. Marine Resource Economics. 2007;22(3):305–27.
12. Knip DM, Heupel MR, Simpfendorfer CA. Sharks in nearshore environments: models, importance, and consequences. Marine Ecology Progress Series. 2010;402:1–11.
13. Dulvy NK, Pardo SA, Simpfendorfer CA, Carlson JK. Diagnosing the dangerous demography of manta rays using life history theory. PeerJ. 2014;2:e400. Epub 2014/06/12. doi: 10.7717/peerj.400 24918029
14. Pardo SA, Kindsvater HK, Cuevas-Zimbron E, Sosa-Nishizaki O, Perez-Jimenez JC, Dulvy NK. Growth, productivity, and relative extinction risk of a data-sparse devil ray. Scientific Reports. 2016;6:33745. Epub 2016/09/24. doi: 10.1038/srep33745 27658342; PubMed Central PMCID: PMC5034314.
15. Smith WD, Cailliet GM, Cortés E. Demography and elasticity of the diamond stingray, Dasyatis dipterura: parameter uncertainty and resilience to fishing pressure. Marine and Freshwater Research. 2008;59(7):575–86. doi: 10.1071/mf07020
16. Stevens JD, Bonfil R, Dulvy NK, Walker PA. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES Journal of Marine Science. 2000;57(3):476–94. doi: 10.1006/jmsc.2000.0724
17. Holden MJ. Problems in the rational exploitation of elasmobranch populations and some suggested solutions. In: Harden FR, editor. Sea Fisheries Research London: Paul Elek Ltd.; 1974. p. 117–37.
18. Holden MJ. Are long-term sustainable fisheries for elasmobranchs possible? Rapports et Procés Verbaux des Rèunions du Conseil International pour l'Exploration de la Mer. 1973;164:360–7.
19. Moore ABM. Are guitarfishes the next sawfishes? Extinction risk and an urgent call for conservation action. Endangered Species Research. 2017;34:75–88. doi: 10.3354/esr00830
20. Last PR, Naylor GJ, Séret B, White W, de Carvalho M, Stehmann M. Rays of the World. Melbourne, VIC: CSIRO Publishing; 2016.
21. Kyne PM, Bennett MB. Diet of the eastern shovelnose ray, Aptychotrema rostrata (Shaw & Nodder, 1794), from Moreton Bay, Queensland, Australia. Marine and Freshwater Research. 2002;53(3):679–86.
22. White J, Simpfendorfer CA, Tobin AJ, Heupel MR. Spatial ecology of shark-like batoids in a large coastal embayment. Environmental Biology of Fishes. 2013;97(7):773–86. doi: 10.1007/s10641-013-0178-7
23. White J, Simpfendorfer CA, Tobin AJ, Heupel MR. Application of baited remote underwater video surveys to quantify spatial distribution of elasmobranchs at an ecosystem scale. Journal of Experimental Marine Biology and Ecology. 2013;448:281–8. doi: 10.1016/j.jembe.2013.08.004
24. Kyne PM, Jabado RW, Rigby CL, Dharmadi, Gore MA, Pollock CM, et al. The thin edge of the wedge: extremely high extinction risk in wedgefishes and giant guitarfishes. bioRxiv PrePrint. 2019. http://dx.doi.org/10.1101/595462.
25. Harrison LR, Dulvy NK. Sawfish: a global strategy for conservation. Vancouver, Canada: IUCN Species Survival Commission's Shark Specialist Group; 2014.
26. Sommerville E, White WT. Elasmobranchs of Tropical Marine Ecosystems. In: Carrier JC, Musick JA, Heithaus MR, editors. Sharks and Their Relatives II: Biodiversity, Adaptive Physiology, and Conservation. Boca Raton: CRC Press; 2010. p. 159–239.
27. D'Alberto BM, White WT, Chin A, Dharmadi, Simpfendorfer CA. Untangling the Indonesian tangle net fishery: describing a data-poor fishery targeting large threatened rays (Order Batoidea) BioRvix. 2019:PrePrint.
28. Stobutzki IC, Miller MJ, Heales DS, Brewer DT. Sustainability of elasmobranchs caught as bycatch in a tropical prawn (shrimp) trawl fishery. Fishery Bulletin. 2002;100(4):800–21.
29. White WT, Kyne PM. The status of chondrichthyan conservation in the Indo-Australasian region. Journal of Fish Biology. 2010;76(9):2090–117. Epub 2010/06/19. doi: 10.1111/j.1095-8649.2010.02654.x 20557656.
30. Jabado RW, Spaet JLY. Elasmobranch fisheries in the Arabian Seas Region: Characteristics, trade and management. Fish and Fisheries. 2017;18(6):1096–118. doi: 10.1111/faf.12227
31. Keong CH. Indonesia. Selangor, Malaysia TRAFFIC, 1996.
32. Diop MS, Dossa J. 30 Years of Shark Fishing in West Africa:. Corlet/Condé-sur-Noireau, France: Fondation Internationale Du Bassin d'Arguin, 2011 2918445045.
33. Hopkins C. External actors, high value resources and threatened species: shark fin commodity chains of Northern Madagascar, interception for conservation: Citeseer; 2011.
34. Pierce SJ, Trerup M, Williams C, Tilley A, Marshall AD, Raba N. Shark fishing in Mozambique: a preliminary assessment of artisanal fisheries. Maputo: Eyes on the Horizon. 2008:1–28.
35. Schaeffer D. Assessment of the artisanal shark fishery and local shark fin trade on Unguja Island, Zanzibar. ISP Collection. 2004:536.
36. Jabado RW. The fate of the most threatened order of elasmobranchs: Shark-like batoids (Rhinopristiformes) in the Arabian Sea and adjacent waters. Fisheries Research. 2018;204:448–57. doi: 10.1016/j.fishres.2018.03.022
37. Mohanraj G, Rajapackiam S, Mohan S, Batcha H, Gomathy S. Status of elasmobranchs fishery in Chennai, India. Asian Fisheries Science. 2009;22(2):607–15.
38. Villwock de Miranda L, Vooren C. Captura e esforço da pesca de elasmobranquios demersais no sul oe Brasil nos anos de 1975 a 1997. [Catch and effort of demersal elasmobranchs in south Brazil from 1975 to 1997]. Frente Marítimo. 2003;19:217–31.
39. Lessa R, Vooren CM. Pseudobatos horkelii. The IUCN Red List of Threatened Species. 2016:e.T41064A103933918. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T41064A103933918.en.
40. Vooren CM, Lamónaca AF, Massa A, Hozbor N. Zapteryx brevirostris. The IUCN Red List of Threatened Species. 2006:e.T61419A12478303. http://dx.doi.org/10.2305/IUCN.UK.2006.RLTS.T61419A12478303.en.
41. Bizzarro JJ, Smith WD, Hueter RE, Tyminski J, Márquez–Farías F, Castillo–Géniz JL, et al. The Status of Shark and Ray Fishery Resources in the Gulf of California: Applied Research to Improve Management and Conservation. 2009.
42. Bizzarro JJ, Smith WD, Márquez-Farías JF, Tyminski J, Hueter RE. Temporal variation in the artisanal elasmobranch fishery of Sonora, Mexico. Fisheries Research. 2009;97(1-2):103–17. doi: 10.1016/j.fishres.2009.01.009
43. Compagno LJV, Last PR. A new species of wedgefish, Rhynchobatus palpebratus sp. nov. (Rhynchobatoide: Rhynchobatidae), from the Indo–West Pacific. In: Last PR, White WT, Pogonoski JJ, editors. Description of new Australian chondrichthyans. Hobart, Australia: CSIRO; 2008. p. 227–40.
44. Fields AT, Fischer GA, Shea SKH, Zhang H, Abercrombie DL, Feldheim KA, et al. Species composition of the international shark fin trade assessed through a retail-market survey in Hong Kong. Conservation Biology. 2018;32(2):376–89. Epub 2017/10/28. doi: 10.1111/cobi.13043 29077226.
45. Wainwright BJ, Ip YCA, Neo ML, Chang JJM, Gan CZ, Clark-Shen N, et al. DNA barcoding of traded shark fins, meat and mobulid gill plates in Singapore uncovers numerous threatened species. Conservation Genetics. 2018:1–7.
46. Ya BP. The shark and ray trade in Singapore. TRAFFIC International. 2017.
47. Thorburn DC, Morgan DL, Rowland AJ, Gill HS, Paling E. Life history notes of the critically endangered dwarf sawfish, Pristis clavata, Garman 1906 from the Kimberley region of Western Australia. Environmental Biology of Fishes. 2007;83(2):139–45. doi: 10.1007/s10641-007-9306-6
48. Simpfendorfer CA. Threatened fishes of the world: Pristis pectinata Latham, 1794 (Pristidae). Environmental Biology of Fishes. 2005;73(1):20–.
49. Thorson TB. The impact of commercial exploitation on sawfish and shark populations in Lake Nicaragua. Fisheries. 1982;7(2):2–10.
50. Dulvy NK, Davidson LNK, Kyne PM, Simpfendorfer CA, Harrison LR, Carlson JK, et al. Ghosts of the coast: global extinction risk and conservation of sawfishes. Aquatic Conservation: Marine and Freshwater Ecosystems. 2016;26(1):134–53. doi: 10.1002/aqc.2525
51. Carlson JK, Simpfendorfer CA. Recovery potential of smalltooth sawfish, Pristis pectinata, in the United States determined using population viability models. Aquatic Conservation: Marine and Freshwater Ecosystems. 2015;25(2):187–200. doi: 10.1002/aqc.2434
52. CMS. Report of the 12th Meeting of the Convention of Parties. Manila, Philippinrd: Convention on Migratory Species (CMS), 2017 28/10/2018. Report No.: UNEP/CMS/COP12/REPORT.
53. CMS. Decisions of the CMS MOU Meeting. Monaco: Memorandum of Understanding on the Conservation of Migratory Sharks, 2018 14/12/2018. Report No.: CMS/Sharks/MOS3/Decisions.
54. CITES. Geneva, Switzerland: Convention on International Trade in Endangered Species 2019 [cited 2019 16/01/2019]. Proposals for amendment of Appendices I and II]. Available from: https://cites.org/eng/cop/18/prop/index.php.
55. Vincent ACJ, Sadovy de Mitcheson YJ, Fowler SL, Lieberman S. The role of CITES in the conservation of marine fishes subject to international trade. Fish and Fisheries. 2014;15(4):563–92. doi: 10.1111/faf.12035
56. Lawson JM, Fordham SV. Sharks ahead: Realizing the potential of the Convention on Migratory Species to conserve elasmobranchs. Washington, DC: Shark Advocates International, 2018.
57. Ostrom E, Burger J, Field CB, Norgaard RB, Policansky D. Revisiting the commons: local lessons, global challenges. science. 1999;284(5412):278–82. doi: 10.1126/science.284.5412.278 10195886
58. Au DW, Smith SE, Show C. New abbreviated calculation for measuring intrinsic rebound potential in exploited fish populations—example for sharks. Canadian Journal of Fisheries and Aquatic Sciences. 2015;72(5):767–73.
59. Au DW, Smith SE. A demographic method with population density compensation for estimating productivity and yield per recruit of the leopard shark (Triakis semifasciata). Canadian Journal of Fisheries and Aquatic Sciences. 1997;54(2):415–20.
60. Hutchings JA, Kuparinen A. Empirical links between natural mortality and recovery in marine fishes. Proceedings of the Royal Society B: Biological Sciences. 2017;284(1856):20170693. doi: 10.1098/rspb.2017.0693 28615502
61. Cortés E. Incorporating Uncertainty into Demographic Modeling: Application to Shark Populations and Their Conservation. Conservation Biology. 2002;16(4):1048–62.
62. Caswell H. Matrix Population Models: Construction, analysis, and interpretation. Second ed. Sunderland, Massachusetts: Sinauer Associates, Inc. Publishers; 2001.
63. Niel C, Lebreton J. Using demographic invariants to detect overharvested bird populations from incomplete data. Conservation Biology. 2005;19(3):826–35.
64. Dillingham PW. Generation time and the maximum growth rate for populations with age-specific fecundities and unknown juvenile survival. Ecological Modelling. 2010;221(6):895–9.
65. Dulvy NK, Forrest RE. Life histories, population dynamics and extinction risks in chondrichthyans. In: Carrier JC, Musick JA, Heithaus MR, editors. Sharks and Their Relatives II: Physiological Adaptations, Behavior, Ecology, Conservation, and Management. 2. Boca Raton: CRC Press; 2010. p. 639–79.
66. Frisk MG, Miller TJ, Fogarty MJ. Estimation and analysis of biological parameters in elasmobranch fishes: a comparative life history study. Canadian Journal of Fisheries and Aquatic Sciences. 2001;58(5):969–81.
67. Dulvy NK, Ellis JR, Goodwin NB, Grant A, Reynolds JD, Jennings S. Methods of assessing extinction risk in marine fishes. Fish and Fisheries. 2004;5(3):255–76. doi: 10.1111/j.1467-2679.2004.00158.x
68. Reynolds JD, Dulvy NK, Goodwin NB, Hutchings JA. Biology of extinction risk in marine fishes. Proceedings of the Royal Society B: Biological Sciences. 2005;272(1579):2337–44. doi: 10.1098/rspb.2005.3281 16243696
69. Myers RA, Mertz G, Fowlow PS. Maximum population growth rates and recovery times for Atlantic cod, Gadus morhua. Fishery Bulletin. 1997;95(4):762–72.
70. Beddington JR, Kirkwood GP. The estimation of potential yield and stock status using life–history parameters. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2005;360(1453):163–70. doi: 10.1098/rstb.2004.1582 15713595
71. Pardo SA, Cooper AB, Reynolds JD, Dulvy NK. Quantifying the known unknowns: estimating maximum intrinsic rate of population increase in the face of uncertainty. ICES Journal of Marine Science. 2018;75(3):953–63. doi: 10.1093/icesjms/fsx220
72. García VB, Lucifora LO, Myers RA. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proceedings of the Royal Society of London B: Biological Sciences. 2008;275(1630):83–9. doi: 10.1098/rspb.2007.1295 17956843
73. Pardo SA, Kindsvater HK, Reynolds JD, Dulvy NK. Maximum intrinsic rate of population increase in sharks, rays, and chimaeras: the importance of survival to maturity. Canadian Journal of Fisheries and Aquatic Sciences. 2016;73(8):1159–63. doi: 10.1139/cjfas-2016-0069
74. White J, Simpfendorfer CA, Tobin AJ, Heupel MR. Age and growth parameters of shark-like batoids. Journal of Fish Biology. 2014;84(5):1340–53. Epub 2014/04/08. doi: 10.1111/jfb.12359 24702252.
75. Last PR, Naylor GJ, Séret B, White WT, de Carvalho M, Stehmann M. Rays of the World. Melbourne, Australia: CSIRO Publishing; 2016.
76. Fabens AJ. Properties and fitting of the von Bertalanffy growth curve. Growth. 1965;29:265. 5865688
77. Pardo SA, Cooper AB, Dulvy N. Avoiding fishy growth curves. Methods in Ecology and Evolution. 2013;4:353–60.
78. Smart JJ, Chin A, Tobin AJ, Simpfendorfer CA. Multimodel approaches in shark and ray growth studies: strengths, weaknesses and the future. Fish and Fisheries. 2016;17(4):955–71. doi: 10.1111/faf.12154
79. Seck AA, Diatta Y, Diop M, Guelorget O, Reynaud C, Capapé C. Observations on the reproductive biology of the blackchin guitarfish Rhinobatos cemiculus E. Geoffroy Saint-Hilaire, 1817 (Chondrichthyes, Rhinobatidae) from the coast of Senegal (Eastern Tropical Atlantic). Scientia Gerundensis. 2004;27:19–30.
80. Ali M, Saad A, Kurbaj H. Reproductive cycle and size at sexual maturity of Chondrichthyan fish Rhinobatos cemiculus (Rhinobatidae) of the Syrian marine waters. Annals of Agricultural Sciences. 2008;46:21–30.
81. Capapé C, Zaouali J. Distribution and reproductive biology of the blackchin guitarfish, Rhinobatos cemiculus (Pisces: Rhinobatidae), in Tunisian waters (Central Mediterranean). Marine and Freshwater Research. 1994;45(4):551–61.
82. Enajjar S, Bradai MN, Bouain A. Age, growth and sexual maturity of the blackchin guitarfish Rhinobatos cemiculus in the Gulf of Gabès (southern Tunisia, central Mediterranean). Cahiers de Biologie Marine. 2012;53(1):17.
83. White WT, Dharmadi. Species and size compositions and reproductive biology of rays (Chondrichthyes, Batoidea) caught in target and non-target fisheries in eastern Indonesia. Journal of Fish Biology. 2007;70(6):1809–37. doi: 10.1111/j.1095-8649.2007.01458.x
84. Rossouw GJ. Age and growth of the sand shark, Rhinobatos annulatus, in Algoa Bay, South Africa. Journal of Fish Biology. 1984;25(2):213–22.
85. Casselberry GA, Carlson JK. Endangered Species Act Status Review of the Brazilian Guitarfish (Rhinobatos horkelii). Report to the National Marine Fisheries Service, Office of Protected Resources SFD Contribution PCB. 2015;15–08.
86. Márquez-Farías JF. Reproductive biology of shovelnose guitarfish Rhinobatos productus from the eastern Gulf of California México. Marine Biology. 2007;151(4):1445–54. doi: 10.1007/s00227-006-0599-3
87. Timmons M, Bray R. Age, growth, and sexual maturity of shovelnose guitarfish, Rhinobatos productus (Ayres). Oceanographic Literature Review. 1998;1(45):148.
88. Downton-Hoffman C. Biología del pez guitarra Rhinobatos productus (Ayres, 1856) Baja California Sur, México. La Paz, México: CICIMAR-IPN; 2007.
89. Newell B. Status Review Report of Two Species of Guitarfish: Rhinobatos rhinobatos and Rhinobatos cemiculus. Report to National Marine Fisheries Service, Office of Protected Resources, National Oceanic and Atmospheric Administration.1–68.
90. Başusta N, Demirhan SA, Çiçek E, Başusta A, Kuleli T. Age and growth of the common guitarfish, Rhinobatos rhinobatos, in Iskenderun Bay (north-eastern Mediterranean, Turkey). Journal of the Marine Biological Association of the UK. 2008;88(04). doi: 10.1017/s0025315408001124
91. Abdel-Aziz SH, Khalil AN, Abdel-Maguid SA. Reprodutive cycle of the Rhinobatos rhinobatos in Alexandria Waters, Mediterranean Sea. Aust J Mar Freshwater Res. 1993;44(507-517).
92. Ismen A, Yıgın C, Ismen P. Age, growth, reproductive biology and feed of the common guitarfish (Rhinobatos rhinobatos Linnaeus, 1758) in İskenderun Bay, the eastern Mediterranean Sea. Fisheries Research. 2007;84(2):263–9. doi: 10.1016/j.fishres.2006.12.002
93. Lteif M, Mouawad R, Jemaa S, Khalaf G, Lenfant P, Verdoit-Jarraya M. The length-weight relationships of three sharks and five batoids in the Lebanese marine waters, eastern Mediterranean. The Egyptian Journal of Aquatic Research. 2016;42(4):475–7. doi: 10.1016/j.ejar.2016.09.008
94. Lteif M, Mouawad R, Khalaf G, Lenfant P, Verdoit-Jarraya M. Population biology of an endangered species: the common guitarfish Rhinobatos rhinobatos in Lebanese marine waters of the eastern Mediterranean Sea. Journal of Fish Biology. 2016;88(4):1441–59. Epub 2016/03/02. doi: 10.1111/jfb.12921 26928654.
95. Barbini SA, Lucifora LO, Hozbor NM. Feeding habits and habitat selectivity of the shortnose guitarfish, Zapteryx brevirostris (Chondrichthyes, Rhinobatidae), off north Argentina and Uruguay. Marine Biology Research. 2011;7(4):365–77. doi: 10.1080/17451000.2010.515229
96. Gonzalez M. Birth of guitarfish, Zapteryx brevirostris (Müller & Henle)(Chondrichthyes, Rhinobatidae) in captivity. Revista Brasileira de Zoologia. 2004;21(4):785–8.
97. Carmo WPD, Fávaro LF, Coelho R. Age and growth of Zapteryx brevirostris (Elasmobranchii: Rhinobatidae) in southern Brazil. Neotropical Ichthyology. 2018;16(1). doi: 10.1590/1982-0224-20170005
98. Colonello JC, Garcia ML, Menni RC. Reproductive biology of the lesser guitarfish Zapteryx brevirostris from the south-western Atlantic Ocean. Journal of Fish Biology. 2011;78(1):287–302. Epub 2011/01/18. doi: 10.1111/j.1095-8649.2010.02864.x 21235561.
99. Blanco-Parra MDP, Márquez-Farías JF, Galván-Magaña F. Reproductive biology of the banded guitarfish, Zapteryx exasperata, from the Gulf of California, México. Journal of the Marine Biological Association of the United Kingdom. 2009;89(08). doi: 10.1017/s0025315409990348
100. Blanco-Parra MDP, Marquez-Farias F, Galvan-Magana F. Fishery and morphometric relationships of the banded guitarfish, Zapteryx exasperata from the Gulf of Califorina Mexico. Pan-American Journal of Aquatic Sciences. 2009;4(4):456–65.
101. Cervantes-Gutiérrez F, Tovar-Ávila J, Galván-Magaña F. Age and growth of the banded guitarfish Zapteryx exasperata (Chondrichthyes: Trygonorrhinidae). Marine and Freshwater Research. 2018;69(1). doi: 10.1071/mf16403
102. Villavicencio-Garayzar CJ. Reproductive Biology Of The Banded Guitarfish, Zapterix exasperata (Pisces: Rhinobatidae), In Bahía Almejas, Baja California Sur, Mexico. Ciencias Marinas. 1995;21(2):141–53.
103. Cortes E. Perspectives on the intrinsic rate of population growth. Methods in Ecology and Evolution. 2016;7(10):1136–45. doi: 10.1111/2041-210X.12592
104. Charnov EL, Schaffer WM. Life-history consequences of natural selection: Cole's result revisited. The American Naturalist. 1973;107(958):791–3. doi: 10.1086/282877
105. Myers RA, Mertz G. The limits of exploitation: a precautionary approach. Ecological Applications. 1998;8(sp1):S165–S9.
106. Simpfendorfer CA. Demographic models: life tables, matrix models and rebound potential. FAO Fisheries Technical Paper. 2005;474:143.
107. Charnov EL, Zuo W. Human hunting mortality threshold rules for extinction in mammals (and fish). Evolutionary Ecology Research. 2011;13:431–7.
108. Natanson LJ, Skomal GB, Hoffmann SL, Porter ME, Goldman KJ, Serra D. Age and growth of sharks: do vertebral band pairs record age? Marine and Freshwater Research. 2018;69(9):1440–52.
109. Jensen AL. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences. 1996;53(4):820–2. doi: 10.1139/f95-233
110. Hewitt DA, Hoenig JM. Comparison of two approaches for estimating natural mortality based on longevity. Fishery Bulletin. 2005;103(2):433–7.
111. Team RC. R: A Language and Environment for Statistical Computing. 2016.
112. Smith SE, Au DW, Show C. Intrinsic rebound potentials of 26 species of Pacific sharks. Marine and Freshwater Research. 1998;49(7):663–78.
113. Dulvy NK, Sadovy Y, Reynolds JD. Extinction vulnerability in marine populations. Fish and Fisheries. 2003;4(1):25–64.
114. Purvis A, Gittleman JL, Cowlishaw G, Mace GM. Predicting extinction risk in declining species. Proceedings of the Royal Society of London B: Biological Sciences. 2000;267(1456):1947–52.
115. Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S. Relationships between body size and some life history parameters. Oecologia. 1978;37(2):257–72. doi: 10.1007/BF00344996 28309655
116. Cushing DH. The natural mortality of the plaice. ICES Journal of Marine Science. 1975;36(2):150–7. doi: 10.1093/icesjms/36.2.150
117. Heupel MR, Simpfendorfer CA. Estuarine nursery areas provide a low-mortality environment for young bull sharks Carcharhinus leucas. Marine Ecology Progress Series. 2011;433:237–44. doi: 10.3354/meps09191
118. Hoenig JM, Then AYH, Babcock EA, Hall NG, Hewitt DA, Hesp SA. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate. ICES Journal of Marine Science. 2016;73(10):2453–67.
119. Then AYH, Hoenig JM, Hall NG, Hewitt DA. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science. 2014;72(1):82–92.
120. Kenchington TJ. Natural mortality estimators for information‐limited fisheries. Fish and Fisheries. 2014;15(4):533–62.
121. Chin A, Simpfendorfer CA, Tobin AJ, Heupel MR. Validated age, growth and reproductive biology of Carcharhinus melanopterus, a widely distributed and exploited reef shark. Marine and Freshwater Research. 2013;64(10):965–75.
122. Smart JJ, Chin A, Tobin AJ, Simpfendorfer CA, White WT. Age and growth of the common blacktip shark Carcharhinus limbatus from Indonesia, incorporating an improved approach to comparing regional population growth rates. African Journal of Marine Science. 2015;37(2):177–88.
123. Cailliet GM, Smith WD, Mollet HF, Goldman KJ. Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting. Environmental Biology of Fishes. 2006;77(3-4):211–28. doi: 10.1007/s10641-006-9105-5
124. Cailliet GM. Perspectives on elasmobranch life-history studies: a focus on age validation and relevance to fishery management. Journal of Fish Biology. 2015;87(6):1271–92. Epub 2015/12/29. doi: 10.1111/jfb.12829 26709208.
125. Harry AV. Evidence for systemic age underestimation in shark and ray ageing studies. Fish and Fisheries. 2018;19(2):185–200.
126. Gedamke T, Hoenig JM, Musick JA, DuPaul WD, Gruber SH. Using demographic models to determine intrinsic rate of increase and sustainable fishing for elasmobranchs: pitfalls, advances, and applications. North American Journal of Fisheries Management. 2007;27(2):605–18.
127. Marshall LJ, White WT, Potter IC. Reproductive biology and diet of the southern fiddler ray, Trygonorrhina fasciata (Batoidea: Rhinobatidae), an important trawl bycatch species. Marine and Freshwater Research. 2007;58(1):104–15.
128. Capapé C, Ben Brahim R, Zaouali J. Aspects de la biologie de la reproduction de Rhinobatos rhinobatos (Rhinobatidae) des eaux tunisiennes. Icthyophysiol Acta. 1997;20:113–27.
129. Kyne PM, Bennett MB. Reproductive biology of the eastern shovelnose ray, Aptychotrema rostrata (Shaw & Nodder, 1794), from Moreton Bay, Queensland, Australia. Marine and Freshwater Research. 2002;53(2):583–9.
130. Simpfendorfer CA. Reproductive strategy of the Australian sharpnose shark, Rhizoprionodon taylori (Elasmobranchii: Carcharhinidae), from Cleveland Bay, northern Queensland. Marine and Freshwater Research. 1992;43(1):67–75.
131. Adams KR, Fetterplace LC, Davis AR, Taylor MD, Knott NA. Sharks, rays and abortion: the prevalence of capture-induced parturition in elasmobranchs. Biological Conservation. 2018;217:11–27.
132. Skalski JR, Ryding KE, Millspaugh J. Wildlife demography: analysis of sex, age, and count data. Burlington, Massachusetts: Elsevier Acadmic Press; 2005. 636 p.
133. Cardeñosa D, Fields AT, Babcock EA, Zhang H, Feldheim KA, Shea SKH, et al. CITES listed sharks remain among the top species in the contemporary fin trade. Conservation Letters. 2018;e12457:1–7. doi: 10.1111/conl.12457
134. CITES. Sharks and manta rays Geneva, Switzerland: Convention on International Trade in Endangered Species 2019 [cited 2019 29/06/2019]. Sharks and manta rays]. Available from: https://www.cites.org/prog/shark.
135. Jabado RW. Wedgefishes and giant guitarfishes: A guide to species identification. New York, NY: Wildlife Conservation Society; 2019.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF