Prosthetic push-off power in trans-tibial amputee level ground walking: A systematic review
Autoři:
Roy Müller aff001; Lisa Tronicke aff003; Rainer Abel aff001; Knut Lechler aff003
Působiště autorů:
Department of Orthopedic Surgery, Klinikum Bayreuth GmbH, Bayreuth, Germany
aff001; Institute of Sport Sciences, Friedrich Schiller University Jena, Jena, Germany
aff002; R&D Össur, Reykjavik, Iceland
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225032
Souhrn
Objective
Unilateral trans-tibial amputation signifies a challenge to locomotion. Prosthetic ankle-foot units are developed to mimic the missing biological system which adapts push-off power to walking speed in some new prosthetic ankle-foot designs. The first systematic review including the two factors aims to investigate push-off power differences among Solid Ankle Cushion Heel (SACH), Energy Storage And Return (ESAR) and Powered ankle-foot units (PWR) and their relation to walking speed.
Data sources
A literature search was undertaken in the Web of Science, PubMed, IEEE xplore, and Google Scholar databases. The search term included: ampu* AND prosth* AND ankle-power AND push-off AND walking.
Study appraisal and synthesis methods
Studies were included if they met the following criteria: unilateral trans-tibial amputees, lower limb prosthesis, reported analysis of ankle power during walking. Data extracted from the included studies were clinical population, type of the prosthetic ankle-foot units (SACH, ESAR, PWR), walking speed, and peak ankle power. Linear regression was used to determine whether the push-off power of different prosthetic ankle-foot units varied regarding walking speed. Push-off power of the different prosthetic ankle-foot units were compared using one-way between subjects’ ANOVAs with post hoc analysis, separately for slower and faster walking speeds.
Results
474 publications were retrieved, 28 of which were eligible for inclusion. Correlations between walking speed and peak push-off power were found for ESAR (r = 0.568, p = 0.006) and PWR (r = 0.820, p = 0.000) but not for SACH (r = 0.267, p = 0.522). ESAR and PWR demonstrated significant differences in push-off power for slower and faster walking speeds (ESAR (p = 0.01) and PWR (p = 0.02)).
Conclusion
Push-off power can be used as a selection criterion to differentiate ankle-foot units for prosthetic users and their bandwidth of walking speeds.
Klíčová slova:
Systematic reviews – Body limbs – Database searching – Prosthetics – Walking – Ankles – Feet – Prototypes
Zdroje
1. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008 Mar;89(3):422–9. doi: 10.1016/j.apmr.2007.11.005 18295618
2. Zelik KE, Adamczyk PG. A unified perspective on ankle push-off in human walking. J Exp Biol. 2016;219(23):3676–3683.
3. Winter DA, Patla AE, Frank JS, Walt SE. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther. 1990;70(6):340–347. doi: 10.1093/ptj/70.6.340 2345777
4. Pickle NT, Wilken JM, Aldridge Whitehead JM, Silverman AK. Whole-body angular momentum during sloped walking using passive and powered lower-limb prostheses. J Biomech. 2016 03;49(14):3397–406. doi: 10.1016/j.jbiomech.2016.09.010 27670646
5. Vrieling AH, Van Keeken HG, Schoppen T, Otten E, Hof AL, Halbertsma JPK, et al. Balance control on a moving platform in unilateral lower limb amputees. Gait Posture. 2008;28(2):222–228. doi: 10.1016/j.gaitpost.2007.12.002 18207407
6. Winter DA. Biomechanics and motor control of human movement. John Wiley & Sons; 2009.
7. Adamczyk PG, Kuo AD. Mechanisms of Gait Asymmetry Due to Push-Off Deficiency in Unilateral Amputees. IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):776–85. doi: 10.1109/TNSRE.2014.2356722 25222950
8. Gailey RS, Wenger MA, Raya M, Kirk N, Erbs K, Spyropoulos P, et al. Energy expenditure of trans-tibial amputees during ambulation at self-selected pace. Prosthet Orthot Int. 1994 Aug;18(2):84–91. doi: 10.3109/03093649409164389 7991365
9. Houdijk H, Pollmann E, Groenewold M, Wiggerts H, Polomski W. The energy cost for the step-to-step transition in amputee walking. Gait Posture. 2009 Jul;30(1):35–40. doi: 10.1016/j.gaitpost.2009.02.009 19321343
10. Morgenroth DC, Segal AD, Zelik KE, Czerniecki JM, Klute GK, Adamczyk PG, et al. The Effect of Prosthetic Foot Push-off on Mechanical Loading Associated with Knee Osteoarthritis in Lower Extremity Amputees. Gait Posture. 2011 Oct;34(4):502–7. doi: 10.1016/j.gaitpost.2011.07.001 21803584
11. Esposito ER, Wilken JM. Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle–foot prostheses. Clin Biomech. 2014;29(10):1186–1192.
12. Morgenroth DC, Gellhorn AC, Suri P. Osteoarthritis in the disabled population: a mechanical perspective. PM&R. 2012;4(5):S20–S27.
13. Czerniecki JM, Gitter A, Munro C. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet. J Biomech. 1991;24(1):63–75. doi: 10.1016/0021-9290(91)90327-j 2026634
14. Collins SH, Kuo AD. Controlled energy storage and return prosthesis reduces metabolic cost of walking. Power. 2005;600:800.
15. Snyder RD. The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees. 1995;7.
16. Ferris AE, Aldridge JM, Rábago CA, Wilken JM. Evaluation of a Powered Ankle-Foot Prosthetic System During Walking. Arch Phys Med Rehabil. 2012 Nov;93(11):1911–8. doi: 10.1016/j.apmr.2012.06.009 22732369
17. Esposito ER, Whitehead JMA, Wilken JM. Step-to-step transition work during level and inclined walking using passive and powered ankle–foot prostheses. Prosthet Orthot Int. 2016 Jun 1;40(3):311–9. doi: 10.1177/0309364614564021 25628378
18. Lechler K, Frossard B, Whelan L, Langlois D, Müller R, Kristjansson K. Motorized Biomechatronic Upper and Lower Limb Prostheses—Clinically Relevant Outcomes. PM&R. 2018 Sep 1;10(9, Supplement 2):S207–19.
19. Herr HM, Grabowski AM. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc Biol Sci. 2012 Feb 7;279(1728):457–64. doi: 10.1098/rspb.2011.1194 21752817
20. Quesada RE, Caputo JM, Collins SH. Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees. J Biomech. 2016 Oct 3;49(14):3452–9. doi: 10.1016/j.jbiomech.2016.09.015 27702444
21. Grimmer M, Seyfarth A. Mimicking human-like leg function in prosthetic limbs. In: Neuro-Robotics. Springer; 2014. p. 105–155.
22. Tahir U, Hessel AL, Lockwood ER, Tester JT, Han Z, Rivera DJ, et al. Case Study: A Bio-Inspired Control Algorithm for a Robotic Foot-Ankle Prosthesis Provides Adaptive Control of Level Walking and Stair Ascent. Front Robot AI. 2018;5:36.
23. Grabowski AM, D’Andrea S. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking. J NeuroEngineering Rehabil. 2013 Jun 7;10:49.
24. Feng Y, Wang Q. Combining push-off power and nonlinear damping behaviors for a lightweight motor-driven transtibial prosthesis. IEEEASME Trans Mechatron. 2017;22(6):2512–2523.
25. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.
26. Cherelle P, Mathijssen G, Wang Q, Vanderborght B, Lefeber D. Advances in Propulsive Bionic Feet and Their Actuation Principles. Adv Mech Eng Lond [Internet]. 2014 [cited 2018 Jan 18]; Available from: https://search.proquest.com/docview/1552843495/abstract/762E0217C874504PQ/1
27. Prince F, Allard P, McFadyen BJ, Aissaoui R. Comparison of gait between young adults fitted with the space foot and nondisabled persons. Arch Phys Med Rehabil. 1993;74(12):1369–1376. doi: 10.1016/0003-9993(93)90095-r 8259907
28. Allard P, Trudeau F, Prince F, Dansereau J, Labelle H, Duhaime M. Modelling and gait evaluation of asymmetrical-keel foot prosthesis. Med Biol Eng Comput. 1995;33(1):2. doi: 10.1007/bf02522937 7616775
29. Zelik KE, Collins SH, Adamczyk PG, Segal AD, Klute GK, Morgenroth DC, et al. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2011 Aug;19(4):411–9.
30. Yeung LF, Leung AK, Zhang M, Lee WC. Effects of heel lifting on transtibial amputee gait before and after treadmill walking: a case study. Prosthet Orthot Int. 2013;37(4):317–323. doi: 10.1177/0309364612461521 23124990
31. Ventura JD, Segal AD, Klute GK, Neptune RR. Compensatory mechanisms of transtibial amputees during circular turning. Gait Posture. 2011 Jul;34(3):307–12. doi: 10.1016/j.gaitpost.2011.05.014 21696958
32. Heitzmann DW, Salami F, De Asha AR, Block J, Putz C, Wolf SI, et al. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot. Gait Posture. 2018;64:174–180. doi: 10.1016/j.gaitpost.2018.06.022 29913354
33. Weinert-Aplin RA, Howard D, Twiste M, Jarvis HL, Bennett AN, Baker RJ. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off. Med Eng Phys. 2017 Jan 1;39:73–82. doi: 10.1016/j.medengphy.2016.10.005 27836575
34. Grimmer M, Holgate M, Ward J, Boehler A, Seyfarth A. Feasibility study of transtibial amputee walking using a powered prosthetic foot. IEEE Int Conf Rehabil Robot Proc. 2017 Jul;2017:1118–23.
35. Huang S, Wensman JP, Ferris DP. An Experimental Powered Lower Limb Prosthesis Using Proportional Myoelectric Control. J Med Devices. 2014 Mar 7;8(2):024501–024501.
36. Zhu J, Wang Q, Wang L. Effects of toe stiffness on ankle kinetics in a robotic transtibial prosthesis during level-ground walking. Mechatronics. 2014;24(8):1254–1261.
37. Realmuto J, Klute G, Devasia S. Preliminary Investigation of Symmetry Learning Control for Powered Ankle-Foot Prostheses. In: 2019 Wearable Robotics Association Conference (WearRAcon) [Internet]. Scottsdale, AZ, USA: IEEE; 2019 [cited 2019 Jul 4]. p. 40–5. Available from: https://ieeexplore.ieee.org/document/8719630/
38. Ray SF, Wurdeman SR, Takahashi KZ. Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device. J Neuroengineering Rehabil. 2018;15(1):6.
39. Childers WL, Takahashi KZ. Increasing prosthetic foot energy return affects whole-body mechanics during walking on level ground and slopes. Sci Rep. 2018;8(1):5354. doi: 10.1038/s41598-018-23705-8 29599517
40. Zelik KE, Honert EC. Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment. J Biomech. 2018 Jun;75:1–12. doi: 10.1016/j.jbiomech.2018.04.017 29724536
41. Huang S, Wensman JP, Ferris DP. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2016;24(5):573–81.
42. Doyle SS, Lemaire ED, Besemann M, Dudek NL. Changes to level ground transtibial amputee gait with a weighted backpack. Clin Biomech. 2014;29(2):149–154.
43. Hubbard WA, McElroy GK. Benchmark data for elderly, vascular trans-tibial amputees after rehabilitation. Prosthet Orthot Int. 1994;18(3):142–149. doi: 10.3109/03093649409164399 7724347
44. Houdijk H, Wezenberg D, Hak L, Cutti AG. Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation. J Neuroengineering Rehabil. 2018;15(1):76.
45. Hofstad C, Linde H, Limbeek J, Postema K. Prescription of prosthetic ankle-foot mechanisms after lower limb amputation. Cochrane Database Syst Rev. 2004;(1):CD003978. doi: 10.1002/14651858.CD003978.pub2 14974050
46. Segal AD, Zelik KE, Klute GK, Morgenroth DC, Hahn ME, Orendurff MS, et al. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation. Hum Mov Sci. 2012 Aug;31(4):918–31. doi: 10.1016/j.humov.2011.08.005 22100728
47. Wezenberg D, Cutti AG, Bruno A, Houdijk H. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost. J Rehabil Res Dev. 2014;51(10):1579. doi: 10.1682/JRRD.2014.03.0081 25860285
48. Hill D, Herr H. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series. IEEE Int Conf Rehabil Robot Proc. 2013 Jun;2013:6650375.
49. Prince F, Winter DA, Sjonnesen G, Wheeldon RK. A new technique for the calculation of the energy stored, dissipated, and recovered in different ankle-foot prostheses. IEEE Trans Rehabil Eng. 1994 Dec;2(4):247–55.
50. Takahashi KZ, Kepple TM, Stanhope SJ. A unified deformable (UD) segment model for quantifying total power of anatomical and prosthetic below-knee structures during stance in gait. J Biomech. 2012 Oct;45(15):2662–7. doi: 10.1016/j.jbiomech.2012.08.017 22939292
51. Major MJ, Scham J, Orendurff M. The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system. Prosthet Orthot Int. 2018 Apr;42(2):198–207. doi: 10.1177/0309364617706749 28486847
52. Schwartz MH, Trost JP, Wervey RA. Measurement and management of errors in quantitative gait data. Gait Posture. 2004 Oct;20(2):196–203. doi: 10.1016/j.gaitpost.2003.09.011 15336291
53. Miller WC, Speechley M, Deathe B. The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Arch Phys Med Rehabil. 2001 Aug;82(8):1031–7. doi: 10.1053/apmr.2001.24295 11494181
54. Dudek NL, Marks MB, Marshall SC, Chardon JP. Dermatologic conditions associated with use of a lower-extremity prosthesis. Arch Phys Med Rehabil. 2005 Apr;86(4):659–63. doi: 10.1016/j.apmr.2004.09.003 15827914
55. Kulkarni J, Gaine WJ, Buckley JG, Rankine JJ, Adams J. Chronic low back pain in traumatic lower limb amputees. Clin Rehabil. 2005;19(1):81–6. doi: 10.1191/0269215505cr819oa 15704512
56. Struyf PA, van Heugten CM, Hitters MW, Smeets RJ. The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees. Arch Phys Med Rehabil. 2009 Mar;90(3):440–6. doi: 10.1016/j.apmr.2008.08.220 19254609
57. Montgomery JR, Grabowski AM. Use of a powered ankle–foot prosthesis reduces the metabolic cost of uphill walking and improves leg work symmetry in people with transtibial amputations. J R Soc Interface. 2018 Aug;15(145):20180442. doi: 10.1098/rsif.2018.0442 30158189
58. Baliunas AJ, Hurwitz DE, Ryals AB, Karrar A, Case JP, Block JA, et al. Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthritis Cartilage. 2002;10(7):573–579. doi: 10.1053/joca.2002.0797 12127838
59. Mündermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: Increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 2005;52(9):2835–44. doi: 10.1002/art.21262 16145666
60. Au SK, Herr H, Weber J, Martinez-Villalpando EC. Powered ankle-foot prosthesis for the improvement of amputee ambulation. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2007;2007:3020–6.
61. Mancinelli C, Patritti BL, Tropea P, Greenwald RM, Casler R, Herr H, et al. Comparing a passive-elastic and a powered prosthesis in transtibial amputees. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2011;2011:8255–8.
62. Caputo JM, Collins SH. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking. Sci Rep [Internet]. 2014 Dec 3 [cited 2015 Mar 18];4. Available from: http://www.nature.com/srep/2014/141203/srep07213/full/srep07213.html
63. AminiAghdam S., Vielemeyer J., Abel R., & Müller R. (2019). Reactive gait and postural adjustments following the first exposures to (un) expected stepdown. Journal of biomechanics, 94, 130–137. doi: 10.1016/j.jbiomech.2019.07.029 31399205
64. Jeffers JR, Grabowski AM. Individual leg and joint work during sloped walking for people with a transtibial amputation using passive and powered prostheses. Front Robot AI. 2017;4:72.
65. Pickle NT, Wilken JM, Aldridge JM, Neptune RR, Silverman AK. Whole-body angular momentum during stair walking using passive and powered lower-limb prostheses. J Biomech. 2014 Oct 17;47(13):3380–9. doi: 10.1016/j.jbiomech.2014.08.001 25213178
66. De Asha AR, Munjal R, Kulkarni J, Buckley JG. Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle’ damping. J NeuroEngineering Rehabil. 2013 Oct 17;10:107.
67. Prince F, Winter DA, Sjonnensen G, Powell C, Wheeldon RK. Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet. J Rehabil Res Dev. 1998 Jun;35(2):177–85. 9651889
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF