Barriers to integration of bioinformatics into undergraduate life sciences education: A national study of US life sciences faculty uncover significant barriers to integrating bioinformatics into undergraduate instruction
Autoři:
Jason J. Williams aff001; Jennifer C. Drew aff002; Sebastian Galindo-Gonzalez aff003; Srebrenka Robic aff004; Elizabeth Dinsdale aff005; William R. Morgan aff006; Eric W. Triplett aff002; James M. Burnette, III aff007; Samuel S. Donovan aff008; Edison R. Fowlks aff009; Anya L. Goodman aff010; Nealy F. Grandgenett aff011; Carlos C. Goller aff012; Charles Hauser aff013; John R. Jungck aff014; Jeffrey D. Newman aff015; William R. Pearson aff016; Elizabeth F. Ryder aff017; Michael Sierk aff018; Todd M. Smith aff019; Rafael Tosado-Acevedo aff020; William Tapprich aff021; Tammy C. Tobin aff022; Arlín Toro-Martínez aff023; Lonnie R. Welch aff024; Melissa A. Wilson aff025; David Ebenbach aff026; Mindy McWilliams aff026; Anne G. Rosenwald aff027; Mark A. Pauley aff028
Působiště autorů:
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
aff001; Microbiology and Cell Science Department, University of Florida, Gainesville, FL, United States of America
aff002; Department of Agricultural Education and Communication, University of Florida, Gainesville, FL, United States of America
aff003; Department of Biology, Agnes Scott College, Decatur, GA, United States of America
aff004; Department of Biology, San Diego State University, San Diego, CA, United States of America
aff005; Department of Biology, College of Wooster, Wooster, OH, United States of America
aff006; University of California, Riverside, Riverside, CA, United States of America
aff007; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
aff008; Department of Biological Sciences, Hampton University, Hampton, VA, United States of America
aff009; Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA, United States of America
aff010; Department of Teacher Education, University of Nebraska at Omaha, Omaha, NE, United States of America
aff011; Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
aff012; Department of Biological Sciences, Bioinformatics Program, St. Edward’s University, Austin, TX, United States of America
aff013; Departments of Biological Sciences and Mathematical Sciences, University of Delaware, Newark, DE, United States of America
aff014; Department of Biology, Lycoming College, Williamsport, PA, United States of America
aff015; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
aff016; Biology and Biotechnology Department, Worcester Polytechnic Institute, Worcester, MA, United States of America
aff017; Bioinformatics Program, Saint Vincent College, Latrobe, PA, United States of America
aff018; Digital World Biology, PMB, Seattle, WA, United States of America
aff019; Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, PR, United States of America
aff020; Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States of America
aff021; Department of Biology, Susquehanna University, Selinsgrove, PA, United States of America
aff022; Department of Biology, Chemistry, and Environmental Sciences, Inter American University of Puerto Rico, San Germán Campus, San Germán, PR, United States of America
aff023; Department of Computer Science, Ohio University, Athens, OH, United States of America
aff024; School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
aff025; Center for New Designs in Learning and Scholarship, Georgetown University, Washington, DC, United States of America
aff026; Department of Biology, Georgetown University, Washington, DC, United States of America
aff027; School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States of America
aff028
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224288
Souhrn
Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents—lack of student interest, overly-full curricula, and lack of student preparation—were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate.
Klíčová slova:
Biology and life sciences – Bioinformatics – Computer and information sciences – Surveys – Graduates – Undergraduates – Workshops – Colleges
Zdroje
1. Greengard S. How computers are changing biology. Commun. ACM. 2014;57: 21–23. doi: 10.1145/2591230
2. Marx V. Biology: the big challenges of big data. Nature. 2013;498: 255–260. doi: 10.1038/498255a 23765498
3. Levine A. An explosion of bioinformatics careers. Science. 2014 Jun 13. doi: 10.1126/science.opms.r1400143
4. White HB, Benore MA, Sumter TF, Caldwell BD, Bell E. What skills should students of undergraduate biochemistry and molecular biology programs have upon graduation? Biochem. Mol. Biol. Educ. 2013;41: 297–301. doi: 10.1002/bmb.20729 24019246
5. Wingreen N, Botstein D. Back to the future: education for systems-level biologists. Nat. Rev. Mol. Cell Biol. 2006;7: 829–832. doi: 10.1038/nrm2023 16990789
6. Pevzner P, Shamir R. Computing has changed biology—biology education must catch up. Science. 2009;325: 541–542. doi: 10.1126/science.1173876 19644094
7. Stefan MI, Gutlerner JL, Born RT, Springer M. The quantitative methods boot camp: teaching quantitative thinking and computing skills to graduate students in the life sciences. PLoS Comput. Biol. 2015;11(4): e1004208. doi: 10.1371/journal.pcbi.1004208 25880064
8. Dinsdale E, Elgin SCR, Grandgenett N, Morgan W, Rosenwald A, Tapprich W, et al. NIBLSE: A Network for Integrating Bioinformatics into Life Sciences Education. CBE Life Sci. Educ. 2015;14: 1–4. doi: 10.1187/cbe.15-06-0123 26466989
9. Hack C, Kendall G. Bioinformatics: current practice and future challenges for life science education. Biochem. Mol. Biol. Educ. 2005;33: 82–85. doi: 10.1002/bmb.2005.494033022424 21638550
10. Karikari TK, Quansah E, Mohamed WMY. Developing expertise in bioinformatics for biomedical research in Africa. Appl. Transl. Genom. 2015;6: 31–34. doi: 10.1016/j.atg.2015.10.002 26767162
11. Kulkarni-Kale U, Sawant S, Chavan V. Bioinformatics education in India. Brief Bioinform. 2010;11: 616–625. doi: 10.1093/bib/bbq027 20705754
12. Wilson Sayres MA, Hauser C, Sierk M, Robic S, Rosenwald AG, Smith TM, et al. Bioinformatics core competencies for undergraduate life sciences education. PLoS ONE. 2018;13(6): e0196878. doi: 10.1371/journal.pone.0196878 29870542
13. National Science Board (NSB). Science and Engineering Indicators 2018. Publication NSB-2018-1, National Center for Science and Engineering Statistics. Available from https://www.nsf.gov/statistics/indicators/
14. Estrada E, Burnett M, Campbell AG, Campbell PB, Denetclaw WF, Gutiérrez CG, et al. Improving underrepresented minority student persistence in STEM. CBE Life Sci. Educ. 2016;15: es5, 1–10. doi: 10.1187/cbe.16-01-0038 27543633
15. Kerr JQ, Hess DJ, Smith CM, Hadfield MG. Recognizing and reducing barriers to science and math education and STEM careers for Native Hawaiians and Pacific Islanders. CBE Life Sci. Educ. 2018;17: mr1, 1–10. doi: 10.1187/cbe.18-06-0091 30496031
16. Snyder TD, Dillow SA. Digest of Education Statistics 2012, Table 291, p. 419. Publication NCES 2014–015, National Center for Education Statistics. Available from: https://nces.ed.gov/pubs2014/2014015.pdf
17. Altman RB. A curriculum for bioinformatics: the time is ripe. Bioinformatics 1998;14: 549–550. doi: 10.1093/bioinformatics/14.7.549 9841111
18. Zauhar RJ. University bioinformatics programs on the rise. Nat. Biotechnol. 2001;19: 285–286. doi: 10.1038/85758 11231569
19. Cummings MP, Temple GG. Broader incorporation of bioinformatics in education: opportunities and challenges. Brief Bioinform. 2010;11: 537–543. doi: 10.1093/bib/bbq058 20798182
20. Jungck JR, Donovan SS, Weisstein AE, Khiripet N, Everse SJ. Bioinformatics education dissemination with an evolutionary problem solving perspective. Brief Bioinform. 2010;11: 570–581. doi: 10.1093/bib/bbq028 21036947
21. Jungck JR, Weisstein AE. Mathematics and evolutionary biology make bioinformatics education comprehensible. Brief Bioinform. 2013;14: 599–609. doi: 10.1093/bib/bbt046 23821621
22. McCormick N, Lucas M. Exploring mathematics college readiness in the United States. Curr. Issues Educ. 2011;14(1). Available from: http://cie.asu.edu/ojs/index.php/cieatasu/article/view/680
23. Morgan DL, Michaelides MP. Setting cut scores for college placement. New York: College Board. Research Report No. 2005–9; 2005. Available from: https://eric.ed.gov/?id=ED562865
24. Holtzclaw JD, Eisen A, Whitney EM, Penumetcha M, Hoey JJ, Kimbro KS. Incorporating a new bioinformatics component into genetics at a historically black college: outcomes and lessons. CBE Life Sci. Educ. 2006;5: 52–64. doi: 10.1187/cbe.05-04-0071 17012191
25. Barone L, Williams J, Micklos D. Unmet needs for analyzing biological big data: a survey of 704 NSF principal investigators. PLoS Comput. Biol. 2017;13(11): e1005755. doi: 10.1371/journal.pcbi.1005755 29049281
26. Crosswell LC, Thornton JM. ELIXIR: a distributed infrastructure for European biological data. Trends in Biotech. 2012;30: 241–241. doi: 10.1016/j.tibtech.2012.02.002 22417641
27. Howard DR, Miskowski JA, Grunwald SK, Abler ML. Assessment of a bioinformatics across life science curricula initiative. Biochem. Mol. Biol. Educ. 2005;35: 16–23. doi: 10.1002/bmb.13 21591051
28. Furge LL, Stevens-Truss R, Moore DB, Langeland JA. Vertical and horizontal integration of bioinformatics education. Biochem. Mol. Biol. Educ. 2009;37: 26–36. doi: 10.1002/bmb.20249 21567685
29. Wightman B, Hark AT. Integration of bioinformatics into an undergraduate biology curriculum and the impact on development of mathematical skills. Biochem. Mol. Biol. Educ. 2012;40: 310–319. doi: 10.1002/bmb.20637 22987552
30. Honts JE. Evolving strategies for the incorporation of bioinfomatics within the undergraduate cell biology curriculum. Cell Biol. Educ. 2003;2: 233–247. doi: 10.1187/cbe.03-06-0026 14673489
31. Magana AJ, Taleyarkhan M, Rivera Alvarado D, Kane M, Springer J, Clase K, et al. A survey of scholarly literature describing the field of bioinformatics education and bioinformatics educational research. CBE-Life Sci. Educ. 2014;13: 607–623. doi: 10.1187/cbe.13-10-0193 25452484
32. Ranganathan S. Bioinformatics education—perspectives and challenges. PLoS Comput. Biol. 2005;1(6): e52. doi: 10.1371/journal.pcbi.0010052 16322761
33. Teal T, Cranston K, Lapp H, White E, Wilson G, Ram K, et al. Data Carpentry: Workshops to increase data literacy for researchers. IJDC. 2015;10: 135–153. Available from: http://dx.doi.org/10.2218/ijdc.v10i1.351
34. Buonaccorsi V, Peterson M, Lamendella G, Newman J, Trun N, Tobin T, et al. Vision and change through the Genome Consortium for Active Teaching using Next-Generation Sequencing (GCAT-SEEK). CBE Life Sci. Educ. 2014;13: 1–2. doi: 10.1187/cbe.13-10-0195 24591495
35. Shaffer CD, Alvarez CJ, Bednarski AE, Dunbar D, Goodman AL, Reinke C, et al. A course-based research experience: how benefits change with increased investment in instructional time. CBE Life Sci. Educ. 2014;13: 111–130. doi: 10.1187/cbe-13-08-0152 24591510
36. Shaffer CD, Alvarez C, Bailey C, Barnard D, Bhalla S, Chandrasekaran C, et al. The Genomics Education Partnership: successful integration of research into laboratory classes at a diverse group of undergraduate institutions. CBE Life Sci. Educ. 2010;9: 55–69. doi: 10.1187/09-11-0087 20194808
37. Rosenwald AG, Russell J, Arora G. The Genome Solver website: a virtual space fostering high impact practices for undergraduate biology. J. Microbiol. Biol. Educ. 2012;13: 188–190. doi: 10.1128/jmbe.v13i2.444 23653812
38. Ditty JL, Williams KM, Keller MM, Chen GY, Liu X, Parales RE. Integrating grant-funded research into the undergraduate biology curriculum using IMG-ACT. Biochem. Mol. Biol. Educ. 2013;41: 16–23. doi: 10.1002/bmb.20662 23382122
39. Ditty JL, Kvaal CA, Goodner B, Freyermuth SK, Bailey C, Britton RA, et al. Incorporating genomics and bioinformatics across the life sciences curriculum. PLoS Biol. 2010;8(8): e1000448. doi: 10.1371/journal.pbio.1000448 20711478
40. Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K, DeJong RJ, et al. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. MBio. 2014;5: e01051–13. doi: 10.1128/mBio.01051-13 24496795
41. Feldon DF, Jeong S, Peugh J, Roksa J, Maahs-Fladung C, Shenoy A, et al. Null effects of boot camps and short-format training for PhD students in life sciences. PNAS. 2017;114: 9854–9858; published ahead of print August 28, 2017. doi: 10.1073/pnas.1705783114 28847929
42. National Research Council. 2009. A New Biology for the 21st Century. Washington, DC: The National Academies Press. https://doi.org/10.17226/12764
43. Dillman DA. Mail and internet surveys: the tailored design method, 2nd ed. Hoboken (NJ): John Wiley & Sons; 2007
44. Leech NL, Onweugbuzie AJ. An array of qualitative data analysis tools: A call for data analysis triangulation. School Psych. Quart. 2007;22: 557–584. doi: 10.1037/1045-3830.22.4.557
45. Harding J. Qualitative data analysis from start to finish. Thousand Oak (CA): Sage; 2013
46. Greenacre M, Blasius J, Eds. Multiple correspondence analysis and related methods. New York: Chapman and Hall/CRC; 2006
47. Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 2008;25(1): 1–18. Available from: https://www.jstatsoft.org/article/view/v025i01
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF