Minimal genetic differentiation of the malaria vector Nyssorhynchus darlingi associated with forest cover level in Amazonian Brazil
Autoři:
Catharine Prussing aff001; Kevin J. Emerson aff002; Sara A. Bickersmith aff003; Maria Anice Mureb Sallum aff004; Jan E. Conn aff001
Působiště autorů:
University at Albany, State University of New York, School of Public Health, Department of Biomedical Sciences, Albany, NY, United States of America
aff001; Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States of America
aff002; Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
aff003; Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brasil
aff004
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225005
Souhrn
The relationship between deforestation and malaria in Amazonian Brazil is complex, and a deeper understanding of this relationship is required to inform effective control measures in this region. Here, we are particularly interested in characterizing the impact of land use and land cover change on the genetics of the major regional vector of malaria, Nyssorhynchus darlingi (Root). We used nextera-tagmented, Reductively Amplified DNA (nextRAD) genotyping-by-sequencing to genotype 164 Ny. darlingi collected from 16 collection sites with divergent forest cover levels in seven municipalities in four municipality groups that span the state of Amazonas in northwestern Amazonian Brazil: São Gabriel da Cachoeira, Presidente Figueiredo, four municipalities in the area around Cruzeiro do Sul, and Lábrea. Using a dataset of 5,561 Single Nucleotide Polymorphisms (SNPs), we investigated the genetic structure of these Ny. darlingi populations with a combination of model- and non-model-based analyses. We identified weak to moderate genetic differentiation among the four municipality groups. There was no evidence for microgeographic genetic structure of Ny. darlingi among forest cover levels within the municipality groups, indicating that there may be gene flow across areas of these municipalities with different degrees of deforestation. Additionally, we conducted an environmental association analysis using two outlier detection methods to determine whether individual SNPs were associated with forest cover level without affecting overall population genetic structure. We identified 14 outlier SNPs, and investigated functions associated with their proximal genes, which could be further characterized in future studies.
Klíčová slova:
Principal component analysis – Genetic loci – Molecular genetics – Population genetics – Forests – Malaria – Brazil – Deforestation
Zdroje
1. Olson SH, Gangnon R, Silveira GA, Patz JA. Deforestation and malaria in Mancio Lima County, Brazil. Emerg Infect Dis. 2010;16:1108–1115. doi: 10.3201/eid1607.091785 20587182.
2. Stefani A, Dusfour I, Correa AP, Cruz MC, Dessay N, Galardo AK, et al. Land cover, land use and malaria in the Amazon: A systematic literature review of studies using remotely sensed data. Malar J. 2013;12:192. doi: 10.1186/1475-2875-12-192 23758827.
3. Hahn MB, Gangnon RE, Barcellos C, Asner GP, Patz JA. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon. PLoS One. 2014;9:e85725. doi: 10.1371/journal.pone.0085725 24404206.
4. Tucker Lima JM, Vittor A, Rifai S, Valle D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos Trans R Soc L B Biol Sci. 2017;372. doi: 10.1098/rstb.2016.0125 28438914.
5. Chaves LSM, Conn JE, López RVM, Sallum MAM. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci Rep. 2018;8:7077. doi: 10.1038/s41598-018-25344-5 29728637.
6. Santos AS, Almeida AN. The impact of deforestation on malaria infections in the Brazilian Amazon. Ecol Econ. 2018;154:247–256. doi: 10.1016/j.ecolecon.2018.08.005
7. de Castro MC, Monte-Mor RL, Sawyer DO, Singer BH. Malaria risk on the Amazon frontier. Proc Natl Acad Sci U S A. 2006;103:2452–2457. doi: 10.1073/pnas.0510576103 16461902.
8. da Silva-Nunes M, Codeco CT, Malafronte RS, da Silva NS, Juncansen C, Muniz PT, et al. Malaria on the Amazonian frontier: Transmission dynamics, risk factors, spatial distribution, and prospects for control. Am J Trop Med Hyg. 2008;79:624–635. 18840755.
9. Valle D, Clark J. Conservation efforts may increase malaria burden in the Brazilian Amazon. PLoS One. 2013;8:e57519. doi: 10.1371/journal.pone.0057519 23483912.
10. Afrane YA, Little TJ, Lawson BW, Githeko AK, Yan G. Deforestation and vectorial capacity of Anopheles gambiae Giles mosquitoes in malaria transmission, Kenya. Emerg Infect Dis. 2008;14:1533–1538. doi: 10.3201/eid1410.070781 18826815.
11. Foster PG, de Oliveira TMP, Bergo ES, Conn JE, Sant’Ana DC, Nagaki SS, et al. Phylogeny of Anophelinae using mitochondrial protein coding genes. R Soc Open Sci. 2017;4:170758. doi: 10.1098/rsos.170758 29291068.
12. Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, et al. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg. 2006;74:3–11. doi: 10.4269/ajtmh.2006.74.3 16407338.
13. Lainhart W, Bickersmith S, Nadler K, Moreno M, Saavedra M, Chu VM, et al. Evidence for temporal population replacement and the signature of ecological adaptation in a major Neotropical malaria vector in Amazonian Peru. Malar J. 2015;14:375. doi: 10.1186/s12936-015-0863-4 26415942.
14. Vittor AY, Pan W, Gilman RH, Tielsch J, Glass G, Shields T, et al. Linking deforestation to malaria in the Amazon: Characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg. 2009;81:5–12. 19556558.
15. de Barros FS, Honorio NA, Arruda ME. Temporal and spatial distribution of malaria within an agricultural settlement of the Brazilian Amazon. J Vector Ecol. 2011;36:159–169. doi: 10.1111/j.1948-7134.2011.00153.x 21635654.
16. de Barros FS, Honorio NA. Deforestation and malaria on the Amazon frontier: Larval clustering of Anopheles darlingi (Diptera: Culicidae) determines focal distribution of malaria. Am J Trop Med Hyg. 2015;93:939–953. doi: 10.4269/ajtmh.15-0042 26416110.
17. Tadei WP, Thatcher BD, Santos JM, Scarpassa VM, Rodrigues IB, Rafael MS. Ecologic observations on anopheline vectors of malaria in the Brazilian Amazon. Am J Trop Med Hyg. 1998;59:325–335. doi: 10.4269/ajtmh.1998.59.325 9715956.
18. Reinbold-Wasson DD, Sardelis MR, Jones JW, Watts DM, Fernandez R, Carbajal F, et al. Determinants of Anopheles seasonal distribution patterns across a forest to periurban gradient near Iquitos, Peru. Am J Trop Med Hyg. 2012;86:459–463. doi: 10.4269/ajtmh.2012.11-0547 22403317.
19. Adde A, Roux E, Mangeas M, Dessay N, Nacher M, Dusfour I, et al. Dynamical mapping of Anopheles darlingi densities in a residual malaria transmission area of French Guiana by using remote sensing and meteorological data. PLoS One. 2016;11:e0164685. doi: 10.1371/journal.pone.0164685 27749938.
20. Martins LMO, David MR, Maciel-de-Freitas R, Silva-do-Nascimento TF. Diversity of Anopheles mosquitoes from four landscapes in the highest endemic region of malaria transmission in Brazil. J Vector Ecol. 2018;43:235–244. doi: 10.1111/jvec.12307 30408291.
21. Kamdem C, Tene Fossog B, Simard F, Etouna J, Ndo C, Kengne P, et al. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae. PLoS One. 2012;7:e39453. doi: 10.1371/journal.pone.0039453 22745756.
22. Caputo B, Nwakanma D, Caputo FP, Jawara M, Oriero EC, Hamid-Adiamoh M, et al. Prominent intraspecific genetic divergence within Anopheles gambiae sibling species triggered by habitat discontinuities across a riverine landscape. Mol Ecol. 2014;23:4574–4589. doi: 10.1111/mec.12866 25040079.
23. Campos M, Conn JE, Alonso DP, Vinetz JM, Emerson KJ, Ribolla PE. Microgeographical structure in the major Neotropical malaria vector Anopheles darlingi using microsatellites and SNP markers. Parasit Vectors. 2017;10:76. doi: 10.1186/s13071-017-2014-y 28193289.
24. Riehle M, Guelbeogo W, Gneme A, Eiglmeier K, Holm I, Bischoff E, et al. A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites. Sci. 2011;331.
25. Fryxell RTT, Nieman CC, Fofana A, Lee Y, Traoré SF, Cornel AJ, et al. Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali. Malar J. 2012;11:133. doi: 10.1186/1475-2875-11-133 22540973
26. Sanford MR, Cornel AJ, Nieman CC, Dinis J, Marsden CD, Weakley AM, et al. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa. F1000Res. 2014;3. doi: 10.12688/f1000research.5485.2 25383188.
27. WHO, Organization WH. World malaria report 2018. Geneva: World Health Organization; 2018.
28. Ferreira MU, Castro MC. Challenges for malaria elimination in Brazil. Malar J. 2016;15:284. doi: 10.1186/s12936-016-1335-1 27206924.
29. Carlos BC, Rona LDP, Christophides GK, Souza-Neto JA. A comprehensive analysis of malaria transmission in Brazil. Pathog Glob Heal. 2019;113:1–13. doi: 10.1080/20477724.2019.1581463 30829565.
30. Canelas T, Castillo-Salgado C, Ribeiro H. Analyzing the local epidemiological profile of malaria transmission in the Brazilian Amazon between 2010 and 2015. PLoS Curr. 2018;10. doi: 10.1371/currents.outbreaks.8f23fe5f0c2052bfaaa648e6931e4e1a 29623243.
31. Conn JE, Sallum M, Correa MM, Grillet ME. Malaria transmission in South America—present status and prospects for elimination. In: Manguin S, Dev V, editors. Towards Malaria Elimination—A Leap Forward. Intech Open; 2018. doi: 10.5772/intechopen.76964
32. Sallum MAM, Conn JE, Bergo ES, Laporta GZ, Chaves LSM, Bickersmith SA, et al. Vector competence, vectorial capacity of Nyssorhynchus darlingi and the basic reproduction number of Plasmodium vivax in agricultural settlements in the Amazonian Region of Brazil. Malar J. 2019;18:117. doi: 10.1186/s12936-019-2753-7 30947726.
33. Emerson KJ, Conn JE, Bergo ES, Randel MA, Sallum MAM. Brazilian Anopheles darlingi (Diptera: Culicidae) clusters by major biogeographical region. PLoS One. 2015;10:e0130773. doi: 10.1371/journal.pone.0130773 26172559.
34. Scarpassa VM, Conn JE. Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers. Mem Inst Oswaldo Cruz. 2007;102:319–327. doi: 10.1590/s0074-02762007005000045 17568937.
35. Mirabello L, Vineis JH, Yanoviak SP, Scarpassa VM, Povoa MM, Padilla N, et al. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America. BMC Ecol. 2008;8:3. doi: 10.1186/1472-6785-8-3 18366795.
36. Pedro PM, Sallum MAM. Spatial expansion and population structure of the neotropical malaria vector, Anopheles darlingi (Diptera: Culicidae). Biol J Linn Soc London. 2009;97:854–866. doi: 10.1111/j.1095-8312.2009.01226.x
37. Angella AF, Salgueiro P, Gil LH, Vicente JL, Pinto J, Ribolla PE. Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi. Malar J. 2014;13:203. doi: 10.1186/1475-2875-13-203 24885508.
38. Linthicum KJ. A revision of the Argyrytarsis Section of the subgenus Nyssorhynchus of Anopheles (Diptera: Culicidae). Mosq Syst. 1988;20:99–271.
39. Hiwat H, Bretas G. Ecology of Anopheles darlingi Root with respect to vector importance: a review. Parasit Vectors. 2011;4:177. doi: 10.1186/1756-3305-4-177 21923902.
40. Mueller-Wilm U, Devignot O, Pessiot L. Sen2Cor. European Space Agency; 2017. Available from: https://step.esa.int/main/third-party-plugins-2/sen2cor/.
41. Russello MA, Waterhouse MD, Etter PD, Johnson EA. From promise to practice: pairing non-invasive sampling with genomics in conservation. Fonseca D, editor. PeerJ. 2015;3:e1106. doi: 10.7717/peerj.1106 26244114.
42. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes, Genomes, Genet. 2011;1:171–182. doi: 10.1534/g3.111.000240 22384329.
43. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–3140. doi: 10.1111/mec.12354 23701397.
44. Prussing C, Moreno M, Saavedra MP, Bickersmith SA, Gamboa D, Alava F, et al. Decreasing proportion of Anopheles darlingi biting outdoors between long-lasting insecticidal net distributions in peri-Iquitos, Amazonian Peru. Malar J. 2018;17:86. doi: 10.1186/s12936-018-2234-4 29463241.
45. Marinotti O, Cerqueira GC, De Almeida LGP, Ferro MIT, Da Silva Loreto EL, Zaha A, et al. The genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acids Res. 2013;41:7387–7400. doi: 10.1093/nar/gkt484 23761445.
46. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324 19451168.
47. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. 10835412.
48. Chhatre VE, Emerson KJ. StrAuto: Automation and parallelization of STRUCTURE analysis. BMC Bioinformatics. 2017;18:192. doi: 10.1186/s12859-017-1593-0 28340552.
49. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x 15969739.
50. Earl DA, vonHoldt BM. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7
51. Jakobsson M, Rosenberg NA. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. doi: 10.1093/bioinformatics/btm233 17485429.
52. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017. Available from: https://www.r-project.org/.
53. Francis RM. pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour. 2017;17:27–32. doi: 10.1111/1755-0998.12509 26850166.
54. Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics. 2014;197:573–589. doi: 10.1534/genetics.114.164350 24700103.
55. Dray S, Dufour A-B. The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw. 2007;22:20. doi: 10.18637/jss.v022.i04
56. Kassambara A, Mundt F. factoextra: Extract and visualize the results of multivariate data analyses. R package. 2017. Available from: https://cran.r-project.org/package=factoextra.
57. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:1–15. doi: 10.1186/1471-2156-11-1 20051104.
58. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129 18397895.
59. Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Souza V, editor. PeerJ. 2014;2:e281. doi: 10.7717/peerj.281 24688859.
60. Pembleton LW, Cogan NOI, Forster JW. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour. 2013;13:946–952. doi: 10.1111/1755-0998.12129 23738873.
61. Frichot E, Schoville SD, François O, Bouchard G. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–1699. doi: 10.1093/molbev/mst063 23543094.
62. Frichot E, François O. LEA: An R package for landscape and ecological association studies. Methods Ecol Evol. 2015;6:925–929. doi: 10.1111/2041-210x.12382
63. Frichot E, Mathieu F, Trouillon T, Bouchard G, François O. Fast and efficient estimation of individual ancestry coefficients. Genetics. 2014;196:973–983. doi: 10.1534/genetics.113.160572 24496008.
64. Günther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics. 2013;195:205–220. doi: 10.1534/genetics.113.152462 23821598.
65. Lischer HEL, Excoffier L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics. 2011;28:298–299. doi: 10.1093/bioinformatics/btr642 22110245.
66. Revelle W. psych: Procedures for personality and psychological research. R package. Northwestern University, Evanston, Illinois, USA; 2018. Available from: https://cran.r-project.org/package=psych.
67. VectorBase. Anopheles darlingi, AdarC3.8. 2018. Available from: https://www.vectorbase.org/organisms/anopheles-darlingi/coari/adarc38.
68. Alexa A, Rahnenfuhrer J. topGO: Enrichment analysis for gene ontology. R package. 2018.
69. Jaffe R, Pope N, Acosta AL, Alves DA, Arias MC, De la Rua P, et al. Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees. Mol Ecol. 2016;25:5345–5358. doi: 10.1111/mec.13852 27662098.
70. Landaverde-González P, Enríquez E, Ariza MA, Murray T, Paxton RJ, Husemann M. Fragmentation in the clouds? The population genetics of the native bee Partamona bilineata (Hymenoptera: Apidae: Meliponini) in the cloud forests of Guatemala. Conserv Genet. 2017;18:631–643. doi: 10.1007/s10592-017-0950-x
71. Soare TW, Kumar A, Naish KA, O’Donnell S. Genetic evidence for landscape effects on dispersal in the army ant Eciton burchellii. Mol Ecol. 2014;23:96–109. doi: 10.1111/mec.12573 24372755.
72. Chu VM, Sallum MAM, Moore TE, Lainhart W, Schlichting CD, Conn JE. Regional variation in life history traits and plastic responses to temperature of the major malaria vector Nyssorhynchus darlingi in Brazil. Sci Rep. 2019;9:5356. doi: 10.1038/s41598-019-41651-x 30926833.
73. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am J Trop Med Hyg. 2006;74:772–778. 16687679.
74. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Life-table analysis of Anopheles arabiensis in western Kenya highlands: effects of land covers on larval and adult survivorship. Am J Trop Med Hyg. 2007;77:660–666. 17978067.
75. Wang X, Zhou G, Zhong D, Wang X, Wang Y, Yang Z, et al. Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae. Parasit Vectors. 2016;9:323. doi: 10.1186/s13071-016-1611-5 27267223.
76. Ayala D, Zhang S, Chateau M, Fouet C, Morlais I, Costantini C, et al. Association mapping desiccation resistance within chromosomal inversions in the African malaria vector Anopheles gambiae. Mol Ecol. 2019;28:1333–1342. doi: 10.1111/mec.14880 30252170.
77. Wellenreuther M, Mérot C, Berdan E, Bernatchez L. Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification. Mol Ecol. 2019;28:1203–1209. doi: 10.1111/mec.15066 30834648.
78. Conn JE, Rosa-Freitas MG, Luz SL, Momen H. Molecular population genetics of the primary neotropical malaria vector Anopheles darlingi using mtDNA. J Am Mosq Control Assoc. 1999;15:468–474. 10612610.
79. Conn JE, Vineis JH, Bollback JP, Onyabe DY, Wilkerson RC, Povoa MM. Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. Am J Trop Med Hyg. 2006;74:798–806. 16687683.
80. Naranjo-Diaz N, Conn JE, Correa MM. Behavior and population structure of Anopheles darlingi in Colombia. Infect Genet Evol. 2016;39:64–73. doi: 10.1016/j.meegid.2016.01.004 26792711.
81. Rosero CY, Jaramillo GI, Gonzalez R, Cardenas H. Genetic differentiation of Colombian populations of Anopheles darlingi Root (Diptera: Culicidae). Neotrop Entomol. 2017;46:487–498. doi: 10.1007/s13744-017-0488-0 28229354.
82. Pavlidis P, Jensen JD, Stephan W, Stamatakis A. A critical assessment of storytelling: gene ontology categories and the importance of validating genomic scans. Mol Biol Evol. 2012;29:3237–3248. doi: 10.1093/molbev/mss136 22617950.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF