Diurnal variations of amplitude of accommodation in different age groups
Autoři:
Sun-Mi Park aff001; Byeong-Yeon Moon aff002; Sang-Yeob Kim aff002; Dong-Sik Yu aff002
Působiště autorů:
Department of Optometry and Vision Science, Kyungwoon University, Gumi, Korea
aff001; Department of Optometry, Kangwon National University, Samcheok, Korea
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225754
Souhrn
Clinical assessment of amplitude of accommodation (AA) involves measuring the ability of the eye to change its optical power and focus on near tasks/objects. AA gradually decreases with increasing age. However, details of age-related diurnal changes in AA are not well known. This study compared diurnal changes in AA in the adolescents, the twenties, and the forties age groups. Measurement of AA using the push-up method was performed in six sessions at two-hourly intervals for 154 subjects (48, 56, 50 subjects for the adolescents, twenties, and forties age groups, respectively); the first measurements were taken from 9:00–10:00 a.m. and the final measurements from 7:00–8:00 p.m. The mean AA was 14.67 D (highest: 16.15 D in the 3:00–4:00 p.m. session, lowest: 13.35 D in the 9:00–10:00 a.m. session) for the adolescent group; 11.13 D (highest: 11.69 D in the 3:00–4:00 p.m. session; lowest: 10.61 D in the 9:00–10:00 a.m. session) in the twenties group; and 5.53 D (highest: 5.80 D in the 1:00–2:00 p.m. session, lowest: 5.11 D in the 7:00–8:00 p.m. session) in the forties age group. The measured AA showed significant difference between sessions; however, diurnal variations were greater in the younger groups. The measured AA was low at the beginning of the day in the adolescents and twenties groups and low at the end of the day in the forties age group. All age groups showed a high AA during the afternoon hours of the day (1:00–4:00 p.m.). Since the difference between each session was larger in younger subjects, AA should be evaluated while taking the age-related diurnal variations into account.
Klíčová slova:
Analysis of variance – Age groups – Eyes – Adolescents – Eye muscles – Binocular vision – Diurnal variations
Zdroje
1. Ostrin LA, Glasser A. Accommodation measurements in a prepresbyopic and presbyopic population. J Cataract Refract Surg. 2004; 30(7):1435–1444. doi: 10.1016/j.jcrs.2003.12.045 15210220
2. Hamasaki D, Ong J, Marg E. The amplitude of accommodation in presbyopia. Am J Optom Arch Am Acad Optom. 1956; 33(1):3–14. doi: 10.1097/00006324-195601000-00002 13283035
3. Charman WN. The path to presbyopia: straight or crooked? Ophthalmic Physiol Opt. 1989; 9(4):424–430. doi: 10.1111/j.1475-1313.1989.tb00946.x 2631011
4. McBrien NA, Millodot M. Amplitude of accommodation and refractive error. Invest. Ophthalmol Vis Sci. 1986; 27(7):1187–1190. 3721800
5. Abraham LM, Kuriakose T, Sivanandam V, Venkatesan N, Thomas R, Muliyil J. Amplitude of accommodation and its relation to refractive errors. Indian J Ophthalmol. 2005; 53(2):105–108. doi: 10.4103/0301-4738.16173 15976465
6. Prokopich CL, Bartlett JD, Jaanus SD. Ocular adverse effects of systemic drugs. In: Bartlett JD, Jaanus SD, Eds. Clinical ocular pharmacology, 5th ed. Boston: Butterworths, 2008:701–759.
7. American Optometric Association. Optometric Clinical Practice Guideline: Care of Patient with Accommodative and Vergence Dysfunction. St. Louis: American Optometric Association; 2011. pp. 24–35. https://www.aoa.org/documents/optometrists/CPG-18.pdf.
8. Scheiman M. Wick B. Clinical management of binocular vision: heterophoric, accommodative, and eye movement disorders, 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2014. pp. 5–20.
9. García-Muñoz Á, Carbonell-Bonete S, Cantó-Cerdán M, Cacho-Martínez P. Accommodative and binocular dysfunctions: prevalence in a randomised sample of university students. Clin Exp Optom. 2016; 99(4):313–321. doi: 10.1111/cxo.12376 27027297
10. Burns DH, Evans BJW, Allen PM. Clinical measurement of amplitude of accommodation: a review. Optom Pract. 2014; 15(3):75–85. https://www.college-optometrists.org/oip-resource/clinical-measurement-of-amplitude-of-accommodation—a-review.html
11. Kasthurirangan S, Glasser A. Age related changes in accommodative dynamics in humans. Vision Res. 2006; 46(8–9):1507–1519. doi: 10.1016/j.visres.2005.11.012 16384590
12. Atchison DA, Charman WN, Woods RL. Subjective depth-of-focus of the eye. Optom Vis Sci. 1997; 74(7):511–520. doi: 10.1097/00006324-199707000-00019 9293519
13. Rosenfield M, Cohen AS. Push-up amplitude of accommodation and target size (letter). Ophthalmic Physiol Opt. 1995; 15(3):231–232. doi: 10.1016/0275-5408(95)90576-n 7659424
14. Momeni-Moghaddam H, Wolffsohn JS, Azimi A, Babaei-Malekkolaei E. Effect of target distance on accommodative amplitude measured using the minus lens technique. Clin Exp Optom. 2014; 97:62–65. doi: 10.1111/cxo.12090 23889500
15. Winn B, Pugh JR, Gilmartin B, Owens H. The effect of pupil size on static and dynamic measurements of accommodation using an infra-red optometer. Ophthal Physiol Opt. 1989; 9:277–283. doi: 10.1111/j.1475-1313.1989.tb00906.x 2622668
16. Hofstetter HW. Useful age-amplitude formula. Opt World. 1950; 38:42–45.
17. Majumder C, Ying LS. Comparison of amplitude of accommodation in different vertical viewing angles. Optom Vis Perf. 2015; 3(5):276–280. https://www.ovpjournal.org/uploads/2/3/8/9/23898265/ovp3-5_article_majumder_web.pdf
18. Leon A, Estrada JM, Rosenfield M. Age and the amplitude of accommodation measured during dynamic retinoscopy. Ophthalmic Physiol Opt. 2016; 36(1):5–12. doi: 10.1111/opo.12244 26353999
19. Kundart J, Tai YC, Hayes JR, Gietzen J, Sheedy J. Real-time objective measurement of accommodation while reading. J Behav Optom. 2011; 22(5):130–134. https://www.oepf.org/sites/default/files/22-5-KUNDART_0.pdf
20. Lee JY, Yu DS, Son JS, Cho HG, Moon BY. The diurnal change of accommodative functions by near work. J Korean Oph Opt Soc. 2011; 16(1):75–81. http://www.koreascience.or.kr/article/JAKO201117760964751.page
21. Kurtev AD, Stoimenova BD, Georgiev ME. Diurnal variations in tonic accommodation. Invest Ophthalmol Vis Sci. 1990; 31(11):2456–2458. 2243008
22. Krumholz DM, Fox RS, Ciuffreda KJ. Short-term changes in tonic accommodation. Invest Ophthalmol Vis Sci. 1986; 27(4):552–557. 3957574
23. Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophth. 2018; 3:e000146. doi: 10.1136/bmjophth-2018-000146
24. Tidbury LP, Czanner G, Newsham D. Fiat Lux: the effect of illuminance on acuity testing. Graefes Arch Clin Exp Ophthalmol. 2016; 254:1091–1097. doi: 10.1007/s00417-016-3329-7 27106623
25. Grisham D, Powers M, Riles P. Visual skills of poor readers in high school. Optometry. 2007; 78(10):542–549. doi: 10.1016/j.optm.2007.02.017 17904495
26. Koslowe K, Glassman T, Tzanani-Levi C, Shneor E. Accommodative amplitude determination: pull-away versus push-up method. Optom Vis Dev. 2010; 41(1):28–32. https://cdn.ymaws.com/www.covd.org/resource/resmgr/ovd41-1/article_accommodativeamplitu.pdf
27. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982; 143(1):29–36. doi: 10.1148/radiology.143.1.7063747 7063747
28. Momeni-Moghaddam H, Kundart J, Askarizadeh F. Comparing measurement techniques of accommodative amplitudes. Indian J Ophthalmol. 2014; 62(6):683–687. doi: 10.4103/0301-4738.126990 25005195
29. Mathebula SD, Ntsoane MD, Makgaba NT, Landela KL. Comparison of the amplitude of accommodation determined subjectively and objectively in South African university students. Afr Vision Eye Health. 2018; 77(1):a437. doi: 10.4102/aveh.v77i1.437
30. Grisham D, Powers M, Riles P. Visual skills of poor readers in high school. Optometry. 2007; 78(10):542–549. doi: 10.1016/j.optm.2007.02.017 17904495
31. Morgan MW. Analysis of clinical data. Am J Optom. 1944; 21: 477–491. https://journals.lww.com/optvissci/Citation/1944/12000/ANALYSIS_OF_CLINICAL_DATA_.1.aspx
32. Ullah N, Pal A. Diurnal change in amplitude of accommodation in adults. Ophthalmology Pakistan. 2016; 6(2):29–32. https://www.ophthalmologypakistan.com/op/index.php/OP/article/view/121
33. Hashemi H, Nabovati P, Khabazkhoob M, Yekta A, Emamian MH, Fotouhi A. Does Hofstetter's equation predict the real amplitude of accommodation in children? Clin Exp Optom. 2018; 101(1):123–128. doi: 10.1111/cxo.12550 28514829
34. Akujobi AU, Vincent CL, Ekenze CJ, Obioma-Elemba JE, Vincent CC. Assessment of amplitude of Accommodation (AA) in Owerri Municipal Council, Southeast, Nigeria. W J Opthalmol & Vision Res. 2018; 1(2):WJOVR.MS.ID.000509. doi: 10.33552/WJOVR.2018.01.000509
35. Ovenseri-Ogbomo GO, Oduntan OA. Comparison of measured with calculated amplitude of accommodation in Nigerian children aged six to 16 years. Clin Exp Optom. 2018; 101(4):571–577. doi: 10.1111/cxo.12520 28176467
36. Mordi JA, Ciuffreda KJ. Static aspects of accommodation: age and presbyopia. Vision Res. 1998; 38(11):1643–1653. doi: 10.1016/s0042-6989(97)00336-2 9747501
37. Rosenfield M. Cohen AS. Repeatability of clinical measurements of the amplitude of accommodation. Ophthalmic Physiol Opt. 1996; 16(3): 247–249. https://doi.org/10.1046/j.1475-1313.1996.95000933.x 8977892
38. Hasebe S, Graf EW, Schor CM. Fatigue reduces tonic accommodation. Ophthalmic Physiol Opt. 2001; 21(2):151–160. doi: 10.1046/j.1475-1313.2001.00558.x 11261349
39. McBrien NA, Millodot M. Amplitude of accommodation and refractive error. Invest Ophthalmol Vis Sci. 1986; 27(7):1187–1190. 3721800
40. Abraham LM, Kuriakose T, Sivanandam V, Venkatesan N, Thomas R, Muliyil J. Amplitude of accommodation and its relation to refractive errors. Indian J Ophthalmol. 2005; 53(2):105–108. doi: 10.4103/0301-4738.16173 15976465
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF