Effects of Debaryomyces hansenii treatment on intestinal mucosa microecology in mice with antibiotic-associated diarrhea
Autoři:
Ao Zeng aff001; Maijiao Peng aff002; Huizhi Liu aff001; Zhaohui Guo aff001; Jun Xu aff001; Shengping Wang aff001; Lu He aff002; Zhoujin Tan aff002
Působiště autorů:
Hunan Institute of Microbiology, Changsha, Hunan Province, China
aff001; Hunan University of Chinese Medicine, Changsha, Hunan Province, China
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224730
Souhrn
Aim
To confirm the effects of Debaryomyces hansenii on intestinal microecology in mice with antibiotic-associated diarrhea (AAD).
Methods
This study took the mucosal microecology as the entry point and an antibiotic mixture was used to induce diarrhea in mice. D. hansenii suspension was used to treat the mice and the bacterial communities of mucosa was analyzed using high-throughput sequencing.
Results
The Shannon-Wiener index indicated that the sequencing depth is reasonable and reflected the majority of microbial information. The principal coordinate analysis results showed that mice in the treatment group and the normal group had a similar microbial community structure, while differences in microbial community structure were observed between the model group and the treatment group. The inter-group bacterial structures were analyzed at the phylum level and genus level. The results revealed that antibiotic treatment increased the proportion of Proteobacteria and decreased the proportion of Bacteroides, while D. hansenii treatment inhibited the increase in Proteobacteria. Linear discriminant analysis coupled with effect size measurements (LEfSe) suggested d that the beneficial bacteria Candidatus Arthromitus were the only common bacteria in the normal group (P<0.05).
Conclusion
The treatment with D.hansenii could contribute to the maintenance of the structure of the mucosal microbiota in comparison with the normal group and inhibit the proliferation of opportunistic bacteria. However, high-dose antibiotic treatment causes mucosal dysbiosis and the proliferation of opportunistic bacteria during the self-recovery period, such as Pseudoalteromonas, Alteromonas, Vibrio.
Klíčová slova:
Bacteria – Antibiotics – Gastrointestinal tract – Community structure – Microbiome – DNA extraction – Diarrhea – Shannon index
Zdroje
1. Doron SI, Hibberd PL, Gorbach SL. Probiotics for prevention of antibiotic-associated diarrhea. J Clin Gastroenterol, 2008;42 (S2): 58–63.
2. Long CX, Lu He, YF Guo, YW Liu, NQ Xiao, ZJ Tan. Diversity of bacterial lactase genes in intestinal contents of mice with antibiotics-induced diarrhea. World J Gastroenterol,2017;23(42):7584–7593 doi: 10.3748/wjg.v23.i42.7584 29204058
3. Jiang XL, Cui HF. An analysis of 10218 ulcerative colitis cases in China. World J Gastroenterol,2012;8(1):158–161.
4. Eamonn MD, Hussein MD, Barbara MD, Bhatia MD, Boeckxstaens MD, De Giorgio MD, et al. A global perspective on irritable bowel syndrome: A consensus statement of the world gastroenterology organization summit task force on irritable bowel syndrome. J Clin Gastroenterol,2012;46(5):356–366. doi: 10.1097/MCG.0b013e318247157c 22499071
5. Iradj S, Julien T, Françoise RT, Jean P. Roperch, L Sophie. Microbial dysbiosis in colorectal cancer (CRC) patients. PloS one,2011, 6(1):16393–16397.
6. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014,157(1):121–141. doi: 10.1016/j.cell.2014.03.011 24679531
7. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16: 341–52. doi: 10.1038/nri.2016.42 27231050
8. Marteau P, Lepage P, Mangin I, Suau A, Dorã J, Pochart P. Review article: gut flora and inflammatory bowel disease. Aliment Pharmacol Ther. 2004;20(Suppl 4):18–23.
9. Liu YJ, Xiao XY, Deng YL, Guo KX, She Y, Tan ZJ. Effects of Qiweibaizhusan combined with yeast on intestinal Lactobacillus diversity in diarrhea mice. Space Med Med Eng. 2016;29(3):175–180.
10. He L, Long CX, Liu YJ, Guo YF, Xiao NQ, Tan ZJ. Effects of Debaryomyces hansenii treatment on intestinal microorganisms in mice with antibiotics-induced diarrhea. 3 Bitotech, 2017;7(5):347.
11. Long CX, Liu YW, He L, Tan QQ, Yu ZZ, Xiao NQ, et al. Bacterial lactase genes diversity in intestinal mucosa of mice with dysbacteriosis diarrhea induced by antibiotics. 3 Biotech. 2018; 8:176. doi: 10.1007/s13205-018-1191-5 29556430
12. Magoc T, and Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011; 27:2957–2963. doi: 10.1093/bioinformatics/btr507 21903629
13. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26:2460–2461. doi: 10.1093/bioinformatics/btq461 20709691
14. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS. Metagenomic biomarker discovery and explanation. Genome Biol. 2011,12.
15. Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol.2007; 62:142–160. doi: 10.1111/j.1574-6941.2007.00375.x 17892477
16. Garg M, Hendy P, Ding JN, Shaw S, Hold G, Hart A. The effect of vitamin D on intestinal inflammation and fecal microbiota in patients with ulcerative colitis. J Crohns Colitis, 2018; 12(8):963–972. doi: 10.1093/ecco-jcc/jjy052 29726893
17. Wang SM, Chen L, He MZ, Shen JD, Li GQ, Tao ZR. Different rearing conditions alter gut microbiota composition and host physiology in Shaoxing ducks. Sci Rep. 2018; 8:7387. doi: 10.1038/s41598-018-25760-7 29743727
18. Zhang C, Chen L, He MZ, Shen JD, Li GQ, Tao ZR. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Comuni. 2013; 4:2163.
19. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measure lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007; 73:1576–1585. doi: 10.1128/AEM.01996-06 17220268
20. Yoshiyuki G, Casandra P, Gaku N, Cebula A, Carolyn L, Marta G D, et al. Ivanov. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immun. 2014;40(4): 594–607.
21. Thompson CL, Mikaelyan A, Brune A. Immune-modulating gut symbionts are not “Candidatus Arthromitus”. Mucosal Immun. 2013; 6:200–201.
22. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016;65(3):426–436. doi: 10.1136/gutjnl-2014-308778 26100928
23. Le Chatelier E, Nielsen T, Qin J, Prifti E, et al. Richness of human gut microbiome correlates with metabolic markers. Nat. 2013;500(7464):541–546.
24. Derrien M, Collado MC, Ben-Amor K. The Mucin degrader Akkermansia mciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2008;74(5):1646–1648. doi: 10.1128/AEM.01226-07 18083887
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF