Dual pathway for metabolic engineering of Escherichia coli to produce the highly valuable hydroxytyrosol
Autoři:
Emmanouil Trantas aff001; Eleni Navakoudis aff001; Theofilos Pavlidis aff001; Theodora Nikou aff002; Maria Halabalaki aff002; Leandros Skaltsounis aff002; Filippos Ververidis aff001
Působiště autorů:
Plant Biochemistry and Biotechnology Group, Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
aff001; Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0212243
Souhrn
One of the most abundant phenolic compounds traced in olive tissues is hydroxytyrosol (HT), a molecule that has been attributed with a pile of beneficial effects, well documented by many epidemiological studies and thus adding value to products containing it. Strong antioxidant capacity and protection from cancer are only some of its exceptional features making it ideal as a potential supplement or preservative to be employed in the nutraceutical, agrochemical, cosmeceutical, and food industry. The HT biosynthetic pathway in plants (e.g. olive fruit tissues) is not well apprehended yet. In this contribution we employed a metabolic engineering strategy by constructing a dual pathway introduced in Escherichia coli and proofing its significant functionality leading it to produce HT. Our primary target was to investigate whether such a metabolic engineering approach could benefit the metabolic flow of tyrosine introduced to the conceived dual pathway, leading to the maximalization of the HT productivity. Various gene combinations derived from plants or bacteria were used to form a newly inspired, artificial biosynthetic dual pathway managing to redirect the carbon flow towards the production of HT directly from glucose. Various biosynthetic bottlenecks faced due to feaB gene function, resolved through the overexpression of a functional aldehyde reductase. Currently, we have achieved equimolar concentration of HT to tyrosine as precursor when overproduced straight from glucose, reaching the level of 1.76 mM (270.8 mg/L) analyzed by LC-HRMS. This work realizes the existing bottlenecks of the metabolic engineering process that was dependent on the utilized host strain, growth medium as well as to other factors studied in this work.
Klíčová slova:
Glucose metabolism – Biosynthesis – Glucose – Escherichia coli – Aldehydes – Tyrosine – Olives – Acetaldehyde
Zdroje
1. Zoidou E, Melliou E, Gikas E, Tsarbopoulos A, Magiatis P, Skaltsounis A-L. Identification of Throuba Thassos, a traditional Greek table olive variety, as a nutritional rich source of oleuropein. J Agric Food Chem. 2009;58(1):46–50.
2. Bianco A, Mazzei RA, Melchioni C, Romeo G, Scarpati ML, Soriero A, et al. Microcomponents of olive oil. Part III. Glucosides of 2(3,4-dihydroxy-phenyl)ethanol. Food Chem. 1998;63:461–4.
3. Bendini A, Cerretani L, Carrasco-Pancorbo A, Gomez-Caravaca AM, Segura-Carretero A, Fernandez-Gutierrez A, et al. Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules. 2007;12(8):1679–719. doi: 10.3390/12081679 17960082.
4. Agalias A, Magiatis P, Skaltsounis AL, Mikros E, Tsarbopoulos A, Gikas E, et al. A new process for the management of olive oil mill waste water and recovery of natural antioxidants. J Agric Food Chem. 2007;55(7):2671–6. Epub 2007/03/14. doi: 10.1021/jf063091d 17348673.
5. Fernández-Bolaños JG, López Ó, López-García MÁ, Marset A. Biological properties of hydroxytyrosol and its derivatives. In: Boskou D, editor. Olive oil—Constituents, quality, health properties and bioconversions: InTech; 2012. p. 375–96.
6. Mastralexi A, Nenadis N, Tsimidou MZ. Addressing analytical requirements to support health claims on “olive oil polyphenols”(EC Regulation 432/2012). J Agric Food Chem. 2014;62(12):2459–61. doi: 10.1021/jf5005918 24576103
7. Visioli F, Bellomo G, Galli C. Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun. 1998;247(1):60–4. Epub 1998/06/24. doi: 10.1006/bbrc.1998.8735 9636654.
8. Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, et al. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation—Antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscl Throm Vas. 2003;23(4):622–9. doi: 10.1161/01.Atv.0000062884.69432.A0 ISI:000182165100015. 12615669
9. Visioli F, Galli C, Plasmati E, Viappiani S, Hernandez A, Colombo C, et al. Olive phenol hydroxytyrosol prevents passive smoking-induced oxidative stress. Circulation. 2000;102(18):2169–71. Epub 2000/11/01. doi: 10.1161/01.cir.102.18.2169 11056087.
10. D'Angelo S, Manna C, Migliardi V, Mazzoni O, Morrica P, Capasso G, et al. Pharmacokinetics and metabolism of hydroxytyrosol, a natural antioxidant from olive oil. Drug Metab Disposition. 2001;29(11):1492–8.
11. Visioli F, Poli A, Gall C. Antioxidant and other biological activities of phenols from olives and olive oil. Medicinal research reviews. 2002;22(1):65–75. 11746176.
12. Bisignano G, Tomaino A, Lo Cascio R, Crisafi G, Uccella N, Saija A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J Pharm Pharmacol. 1999;51(8):971–4. doi: 10.1211/0022357991773258 10504039.
13. Mavrakis T, Trantas E, Agalias A, Skaltsounis L, Ververidis F, editors. Isolation of natural plant antioxidant substances from olive and katsigaros and their exploitation in plant protection. Phytopathol Mediterr; 2006.
14. Tuck KL, Hayball PJ. Major phenolic compounds in olive oil: metabolism and health effects. The Journal of Nutritional Biochemistry. 2002;13(11):636–44. 12550060
15. Zoric N, Horvat I, Kopjar N, Vucemilovic A, Kremer D, Tomic S, et al. Hydroxytyrosol expresses antifungal activity in vitro. Curr Drug Targets. 2013;14(9):992–8. Epub 2013/06/01. doi: 10.2174/13894501113149990167 23721186.
16. Mougiou N, Trikka F, Trantas E, Ververidis F, Makris A, Argiriou A, et al. Expression of hydroxytyrosol and oleuropein biosynthetic genes are correlated with metabolite accumulation during fruit development in olive, Olea europaea, cv. Koroneiki. Plant Physiol Biochem. 2018;128:41–9. doi: 10.1016/j.plaphy.2018.05.004 29753981
17. Alagna F, Mariotti R, Panara F, Caporali S, Urbani S, Veneziani G, et al. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. BMC Plant Biol. 2012;12:162. doi: 10.1186/1471-2229-12-162 22963618; PubMed Central PMCID: PMC3480905.
18. Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer. 2000;36(10):1235–47. Epub 2000/07/07. doi: 10.1016/s0959-8049(00)00103-9 10882862.
19. Owen RW, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem Toxicol. 2000;38(8):647–59. Epub 2000/07/26. doi: 10.1016/s0278-6915(00)00061-2 10908812.
20. Owen RW, Haubner R, Mier W, Giacosa A, Hull WE, Spiegelhalder B, et al. Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food Chem Toxicol. 2003;41(5):703–17. Epub 2003/03/28. doi: 10.1016/s0278-6915(03)00011-5 12659724.
21. Servili M, Selvaggini R, Esposto S, Taticchi A, Montedoro G, Morozzi G. Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J Chromatogr. 2004;1054(1–2):113–27.
22. Capasso R, Evidente A, Avolio S, Solla F. A highly convenient synthesis of hydroxytyrosol and its recovery from agricultural waste waters. J Agric Food Chem. 1999;47(4):1745–8. doi: 10.1021/jf9809030 10564048.
23. Zhang Z-L, Chen J, Xu Q, Rao C, Qiao C. Efficient synthesis of hydroxytyrosol from 3,4-dihydroxybenzaldehyde. Synthetic Communications. 2012;42(6):794–8. doi: 10.1080/00397911.2010.531369
24. Espin JC, Soler-Rivas C, Cantos E, Tomas-Barberan FA, Wichers HJ. Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J Agric Food Chem. 2001;49(3):1187–93. doi: 10.1021/jf001258b 11312833
25. Orenes-Piñero E, García-Carmona F, Sánchez-Ferrer Á. A new process for obtaining hydroxytyrosol using transformed Escherichia coli whole cells with phenol hydroxylase gene from Geobacillus thermoglucosidasius. Food Chem. 2013;139(1–4):377–83. doi: 10.1016/j.foodchem.2012.12.063 23561120
26. Allouche N, Damak M, Ellouz R, Sayadi S. Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. Appl Environ Microbiol. 2004;70(4):2105–9. doi: 10.1128/AEM.70.4.2105-2109.2004 15066802.
27. Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS. Engineering of L-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metab Eng. 2012;14(6):603–10. Epub 2012/09/06. doi: 10.1016/j.ymben.2012.08.002 22948011.
28. Chung D, Kim SY, Ahn J-H. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Scientific reports. 2017;7. doi: 10.1038/s41598-017-00035-9
29. Juminaga D, Baidoo EE, Redding-Johanson AM, Batth TS, Burd H, Mukhopadhyay A, et al. Modular engineering of L-tyrosine production in Escherichia coli. Appl Environ Microbiol. 2012;78(1):89–98. doi: 10.1128/AEM.06017-11 22020510; PubMed Central PMCID: PMC3255607.
30. Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K. Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl Environ Microbiol. 2012;78(17):6203–16. doi: 10.1128/AEM.01148-12 22752168; PubMed Central PMCID: PMC3416637.
31. Torrens-Spence MP, Gillaspy G, Zhao B, Harich K, White RH, Li J. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme. Biochem Biophys Res Commun. 2012;418(2):211–6. Epub 2012/01/24. doi: 10.1016/j.bbrc.2011.12.124 22266321.
32. Hernandez-Romero D, Sanchez-Amat A, Solano F. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. FEBS J. 2006;273(2):257–70. Epub 2006/01/13. doi: 10.1111/j.1742-4658.2005.05038.x 16403014.
33. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, et al. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 2004;32(suppl 1):D431–D3.
34. Marisch K, Bayer K, Cserjan-Puschmann M, Luchner M, Striedner G. Evaluation of three industrial Escherichia coli strains in fed-batch cultivations during high-level SOD protein production. Microb Cell Fact. 2013;12(1):58. doi: 10.1186/1475-2859-12-58 23758670
35. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics. 2010;26(22):2811–7. doi: 10.1093/bioinformatics/btq530 20847219
36. Kawalleck P, Keller H, Hahlbrock K, Scheel D, Somssich IE. A pathogen-responsive gene of parsley encodes tyrosine decarboxylase. J Biol Chem. 1993;268(3):2189–94. Epub 1993/01/25. 8420986.
37. Facchini PJ, Penzes-Yost C, Samanani N, Kowalchuk B. Expression patterns conferred by tyrosine/dihydroxyphenylalanine decarboxylase promoters from opium poppy are conserved in transgenic tobacco. Plant Physiol. 1998;118(1):69–81. Epub 1998/09/11. doi: 10.1104/pp.118.1.69 9733527; PubMed Central PMCID: PMC34875.
38. Hernandez-Romero D, Solano F, Sanchez-Amat A. Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl Environ Microbiol. 2005;71(11):6808–15. Epub 2005/11/05. doi: 10.1128/AEM.71.11.6808-6815.2005 16269713; PubMed Central PMCID: PMC1287666.
39. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
40. Schaerlaekens K, Schierova M, Lammertyn E, Geukens N, Anne J, Van Mellaert L. Twin-arginine translocation pathway in Streptomyces lividans. J Bacteriol. 2001;183(23):6727–32. doi: 10.1128/JB.183.23.6727-6732.2001 11698358; PubMed Central PMCID: PMC95510.
41. Kouloura E, Skaltsounis AL, Michel S, Halabalaki M. Ion tree-based structure elucidation of acetophenone dimers (AtA) from Acronychia pedunculata and their identification in extracts by liquid chromatography electrospray ionization LTQ-Orbitrap mass spectrometry. J Mass Spectrom. 2015;50(3):495–512. doi: 10.1002/jms.3556 25800186.
42. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol J. 2007;2(10):1214–34. doi: 10.1002/biot.200700084 17935117.
43. Trantas E, Panopoulos N, Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng. 2009;11(6):355–66. doi: 10.1016/j.ymben.2009.07.004 19631278
44. Molloy S, Nikodinovic-Runic J, Martin LB, Hartmann H, Solano F, Decker H, et al. Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches. Biotechnol Bioeng. 2013;110(7):1849–57. doi: 10.1002/bit.24859 23381872.
45. Rodriguez GM, Atsumi S. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng. 2014;25:227–37. doi: 10.1016/j.ymben.2014.07.012 25108218; PubMed Central PMCID: PMC4411948.
46. Ou J, Wang L, Ding X, Du J, Zhang Y, Chen H, et al. Stationary phase protein overproduction is a fundamental capability of Escherichia coli. Biochem Biophys Res Commun. 2004;314(1):174–80. doi: 10.1016/j.bbrc.2003.12.077 14715262
47. Galloway CA, Sowden MP, Smith HC. Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. BioTechniques. 2003;34(3):524–6, 8, 30. doi: 10.2144/03343st04 12661158
48. Brouk M, Fishman A. Improving process conditions of hydroxytyrosol synthesis by toluene-4-monooxygenase. Journal of Molecular Catalysis B: Enzymatic. 2012;84:121–7.
49. Napora-Wijata K, Strohmeier GA, Winkler M. Biocatalytic reduction of carboxylic acids. Biotechnology journal. 2014;9(6):822–43. Epub 2014/04/17. doi: 10.1002/biot.201400012 24737783.
50. Choo HJ, Kim EJ, Kim SY, Lee Y, Kim B-G, Ahn J-H. Microbial synthesis of hydroxytyrosol and hydroxysalidroside. Appl Biol Chem. 2018;61(3):295–301. doi: 10.1007/s13765-018-0360-x
51. Li X, Chen Z, Wu Y, Yan Y, Sun X, Yuan Q. Establishing an artificial pathway for efficient biosynthesis of hydroxytyrosol. ACS Synth Biol. 2018;7(2):647–54. doi: 10.1021/acssynbio.7b00385 29281883.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF