Molecular epidemiological characteristics of dengue virus carried by 34 patients in Guangzhou in 2018
Autoři:
Feng Liao aff001; Huini Chen aff002; Jieliang Xie aff003; Shaofeng Zhan aff004; Pan Pan aff005; Zizhao Lao aff006; Yaohua Fan aff004; Lupin Lin aff007; Yanni Lai aff004; Shuangfeng Lin aff004; Jianguo Wu aff002; Xiaohong Liu aff001; Geng Li aff001
Působiště autorů:
Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
aff001; Institute of Medical Microbiology, Jinan University, Guangzhou, China
aff002; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
aff003; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
aff004; College of Life Sciences, Wuhan University, Wuhan, China
aff005; Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
aff006; Guangzhou eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
aff007
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224676
Souhrn
Dengue fever is a major worldwide public health problem that, as estimated by the WHO, causes epidemics in over 100 countries, resulting in hundreds of millions of dengue virus (DENV) infections every year. In China, dengue fever mainly occurs in coastal areas. Recurring dengue outbreaks were reported by Guangdong Province almost every year since the first epidemic in 1978. DENV infections persisted in Guangzhou in consecutive years since 2000, with the dengue epidemic reaching a historical peak in 2014. Because Guangzhou is one of the largest cities for opening up in China, understanding the epidemiological characteristics of dengue fever in the city can hopefully provide a significant basis for developing effective dengue prevention strategies. In this study, a total of 34 DENV strains, including 29 DENV-1 strains and 5 DENV-2 strains, were isolated from a blood samples drawn from patients who were diagnosed with dengue fever by hospitals in Guangzhou during 2018. To explore the epidemiological characteristics of dengue fever, the envelope (E) gene obtained from the isolates was amplified for phylogenetic analysis. The results from the phylogenetic analysis showed that DENV in Guangzhou was mainly imported from Southeast Asian countries. Additionally, propagation paths based on phylogeographical analysis suggested potential local dengue transmission in Guangzhou.
Klíčová slova:
Sequence analysis – Phylogenetics – Phylogenetic analysis – Sequence databases – China – Dengue virus – Dengue fever – Mosquitoes
Zdroje
1. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 2014;22(3):138–46. doi: 10.1016/j.tim.2013.12.011 24468533; PubMed Central PMCID: PMC3946041.
2. Chen R, Vasilakis N. Dengue—quo tu et quo vadis? Viruses. 2011;3(9):1562–608. Epub 2011/10/14. doi: 10.3390/v3091562 21994796; PubMed Central PMCID: PMC3187692.
3. Endy TP, Yoon IK, Mammen MP. Prospective cohort studies of dengue viral transmission and severity of disease. Curr Top Microbiol Immunol. 2010;338:1–13. Epub 2009/10/06. doi: 10.1007/978-3-642-02215-9_1 19802574.
4. Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D, et al. Global Epidemiology of Dengue Outbreaks in 1990–2015: A Systematic Review and Meta-Analysis. Front Cell Infect Microbiol. 2017;7:317. Epub 2017/07/28. doi: 10.3389/fcimb.2017.00317 28748176; PubMed Central PMCID: PMC5506197.
5. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. WHO Guidelines Approved by the Guidelines Review Committee. Geneva2009.
6. Ko HY, Li YT, Chao DY, Chang YC, Li ZT, Wang M, et al. Inter- and intra-host sequence diversity reveal the emergence of viral variants during an overwintering epidemic caused by dengue virus serotype 2 in southern Taiwan. PLoS Negl Trop Dis. 2018;12(10):e0006827. doi: 10.1371/journal.pntd.0006827 30286095; PubMed Central PMCID: PMC6191158.
7. Shepard DS, Undurraga EA, Betancourt-Cravioto M, Guzman MG, Halstead SB, Harris E, et al. Approaches to refining estimates of global burden and economics of dengue. PLoS Negl Trop Dis. 2014;8(11):e3306. Epub 2014/11/21. doi: 10.1371/journal.pntd.0003306 25412506; PubMed Central PMCID: PMC4238988.
8. Qing M, Zou G, Wang QY, Xu HY, Dong H, Yuan Z, et al. Characterization of dengue virus resistance to brequinar in cell culture. Antimicrob Agents Chemother. 2010;54(9):3686–95. doi: 10.1128/AAC.00561-10 20606073; PubMed Central PMCID: PMC2934995.
9. Niu C, Huang Y, Wang M, Huang D, Li J, Huang S, et al. Differences in the Transmission of Dengue Fever by Different Serotypes of Dengue Virus. Vector Borne Zoonotic Dis. 2019. doi: 10.1089/vbz.2019.2477 31503521.
10. Li G, Pan P, He Q, Kong X, Wu K, Zhang W, et al. Molecular epidemiology demonstrates that imported and local strains circulated during the 2014 dengue outbreak in Guangzhou, China. Virol Sin. 2017;32(1):63–72. doi: 10.1007/s12250-016-3872-8 28120220.
11. Lai S, Johansson MA, Yin W, Wardrop NA, van Panhuis WG, Wesolowski A, et al. Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005–2015. PLoS Negl Trop Dis. 2018;12(11):e0006743. doi: 10.1371/journal.pntd.0006743 30412575.
12. Chen P, Yang F, Cao W, Liu H, Zhang K, Liu X, et al. The Distribution of Different Clades of Seneca Valley Viruses in Guangdong Province, China. Virol Sin. 2018;33(5):394–401. Epub 2018/10/18. doi: 10.1007/s12250-018-0056-8 30328012; PubMed Central PMCID: PMC6235767.
13. Lai S, Huang Z, Zhou H, Anders KL, Perkins TA, Yin W, et al. The changing epidemiology of dengue in China, 1990–2014: a descriptive analysis of 25 years of nationwide surveillance data. BMC Med. 2015;13:100. Epub 2015/05/01. doi: 10.1186/s12916-015-0336-1 25925417; PubMed Central PMCID: PMC4431043.
14. Zhao H, Zhang FC, Zhu Q, Wang J, Hong WX, Zhao LZ, et al. Epidemiological and Virological Characterizations of the 2014 Dengue Outbreak in Guangzhou, China. PLoS One. 2016;11(6):e0156548. Epub 2016/06/04. doi: 10.1371/journal.pone.0156548 27257804; PubMed Central PMCID: PMC4892648.
15. Li MT, Sun GQ, Yakob L, Zhu HP, Jin Z, Zhang WY. The Driving Force for 2014 Dengue Outbreak in Guangdong, China. PLoS One. 2016;11(11):e0166211. Epub 2016/11/20. doi: 10.1371/journal.pone.0166211 27861514; PubMed Central PMCID: PMC5115708.
16. Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P. The interplay of climate, intervention and imported cases as determinants of the 2014 dengue outbreak in Guangzhou. PLoS Negl Trop Dis. 2017;11(6):e0005701. Epub 2017/06/24. doi: 10.1371/journal.pntd.0005701 28640895; PubMed Central PMCID: PMC5507464.
17. Lin Y, Ma D, Wen S, Zeng F, Hong S, Li L, et al. Molecular characterization of the viral structural gene of the first dengue virus type 1 outbreak in Xishuangbanna: A border area of China, Burma and Laos. Int J Infect Dis. 2019;79:152–61. doi: 10.1016/j.ijid.2018.11.370 30528395.
18. Tong MX, Hansen A, Hanson-Easey S, Xiang J, Cameron S, Liu Q, et al. Dengue control in the context of climate change: Views from health professionals in different geographic regions of China. J Infect Public Health. 2018. Epub 2019/01/05. doi: 10.1016/j.jiph.2018.12.010 30606474.
19. Sang S, Chen B, Wu H, Yang Z, Di B, Wang L, et al. Dengue is still an imported disease in China: a case study in Guangzhou. Infect Genet Evol. 2015;32:178–90. Epub 2015/03/17. doi: 10.1016/j.meegid.2015.03.005 25772205.
20. Sang S, Gu S, Bi P, Yang W, Yang Z, Xu L, et al. Predicting unprecedented dengue outbreak using imported cases and climatic factors in Guangzhou, 2014. PLoS Negl Trop Dis. 2015;9(5):e0003808. Epub 2015/05/29. doi: 10.1371/journal.pntd.0003808 26020627; PubMed Central PMCID: PMC4447292.
21. Radke EG, Gregory CJ, Kintziger KW, Sauber-Schatz EK, Hunsperger EA, Gallagher GR, et al. Dengue outbreak in Key West, Florida, USA, 2009. Emerg Infect Dis. 2012;18(1):135–7. Epub 2012/01/20. doi: 10.3201/eid1801.110130 22257471; PubMed Central PMCID: PMC3310087.
22. Yong YK, Thayan R, Chong HT, Tan CT, Sekaran SD. Rapid detection and serotyping of dengue virus by multiplex RT-PCR and real-time SYBR green RT-PCR. Singapore Med J. 2007;48(7):662–8. 17609830.
23. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. Epub 2013/01/19. doi: 10.1093/molbev/mst010 23329690; PubMed Central PMCID: PMC3603318.
24. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1(1):vev003. Epub 2015/05/26. doi: 10.1093/ve/vev003 27774277; PubMed Central PMCID: PMC5014473.
25. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26(5):680–2. Epub 2010/01/08. doi: 10.1093/bioinformatics/btq003 20053844; PubMed Central PMCID: PMC2828112.
26. Xia X, Xie Z. DAMBE: software package for data analysis in molecular biology and evolution. J Hered. 2001;92(4):371–3. Epub 2001/09/06. doi: 10.1093/jhered/92.4.371 11535656.
27. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. Epub 2012/08/01. doi: 10.1038/nmeth.2109 22847109; PubMed Central PMCID: PMC4594756.
28. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. Epub 2014/11/06. doi: 10.1093/molbev/msu300 25371430; PubMed Central PMCID: PMC4271533.
29. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. Epub 2014/01/24. doi: 10.1093/bioinformatics/btu033 24451623; PubMed Central PMCID: PMC3998144.
30. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2(1):vew007. Epub 2016/10/25. doi: 10.1093/ve/vew007 27774300; PubMed Central PMCID: PMC4989882.
31. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. Epub 2007/11/13. doi: 10.1186/1471-2148-7-214 17996036; PubMed Central PMCID: PMC2247476.
32. Ayres DL, Aaron D, Zwickl DJ, Peter B, Holder MT, Lewis PO, et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. 2012.
33. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol. 2018;67(5):901–4. Epub 2018/05/03. doi: 10.1093/sysbio/syy032 29718447; PubMed Central PMCID: PMC6101584.
34. Guo X, Zhao T, Dong Y, Lu B. Survival and replication of dengue-2 virus in diapausing eggs of Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2007;44(3):492–7. doi: 10.1603/0022-2585(2007)44[492:sarodv]2.0.co;2 17547236.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF