Aspartate aminotransferase-to-platelet ratio index (APRI): A potential marker for diagnosis in patients at risk of severe malaria caused by Plasmodium vivax
Autoři:
Karla Sena Guedes aff001; Bruno Antônio Marinho Sanchez aff001; Luciano Teixeira Gomes aff002; Cor Jesus Fernandes Fontes aff001
Působiště autorů:
Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
aff001; Júlio Müller University Hospital, Federal University of Mato Grosso, Cuiabá, Brazil
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224877
Souhrn
Acute infection with Plasmodium vivax, classically associated with benign disease, has been presenting as serious and even fatal disease in recent years. Severe disease is mainly due to biochemical and hematological alterations during the acute phase of infection. In the present cross-sectional study, the aspartate aminotransferase-to-platelet ratio index (APRI) was evaluated as a method for identifying patients at risk of severe vivax malaria. This retrospective study included 130 patients with confirmed P. vivax infection between June 2006 and January 2018. Clinical-epidemiological data were obtained from medical records. Hematological and biochemical parameters were determined using automated equipment. The criteria of severity for infection by Plasmodium falciparum, established by the World Health Organization (WHO), were adapted to classify patients with danger signs of severe vivax malaria. Of the 130 patient’s records evaluated, 19 (14.6%) had one or more signs and symptoms of severe malaria. The mean APRI values among patients with and without severe malaria were 2.11 and 1.09, respectively (p = 0.044). Among those with severe disease, the proportion with an APRI value above 1.50 was 30% compared to the 10% among those without severe disease (p = 0.007). The area under the receiver operating characteristic curve (95% CI), calculated to assess the accuracy of the APRI in discriminating between patients with and without severe disease, was 0.645 (0.494; 0.795). An APRI cutoff of 0.74 resulted in sensitivity of 74.0%, specificity of 56.0%, and accuracy of 65.0%. This study shows that the APRI is elevated in patients with evidence of infection by P. vivax. Based on the good sensitivity found in this study, we conclude that this simple index can serve as a diagnostic biomarker to identify patients at risk of severe disease during the acute phase of P. vivax infection.
Klíčová slova:
Diagnostic medicine – Respiratory infections – Hematology – Biomarkers – Malaria – Plasmodium – Malarial parasites – Platelets
Zdroje
1. Lomar AV, Vidal JE, Lomar FP, Barbas CV, de Matos GJ, Boulos M. Acute respiratory distress syndrome due to vivax malaria: case report and literature review. Braz J Infect Dis. 2005; 9: 425–430. doi: 10.1590/s1413-86702005000500011 16410895
2. Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med. 2008; 17;5(6):e128. doi: 10.1371/journal.pmed.0050128 18563962
3. Price RN, Dorsey G, Nosten F. Antimalarial therapies in children from Papua New Guinea. N Engl J Med. 2009; 360 (12):1254. doi: 10.1056/NEJMc090023 19297580
4. Nadkar MY, Huchche AM, Singh R, Pazare AR. Clinical profile of severe Plasmodium vivax malaria in a tertiary care centre in Mumbai from June 2010-January 2011. J Assoc Physicians India. 2012; 60:11–3. 23777018
5. WHO |World malaria report 2015 [internet]. WHO. [cited 2019 Mai 25]. Available from: https://www.who.int/malaria/publications/world-malaria-report-2015/report/en/
6. Barcus MJ, Basri H, Picarima H, Manyakori C, Sekartuti, Elyazar I et al. Demographic risk factors for severe and fatal vivax and falciparum malaria among hospital admissions in northeastern Indonesian Papua. Am J Trop Med Hyg. 2007; 77(5):984–91. 17984364
7. Limaye CS, Londhey VA, Nabar ST. The study of complications of vivax malaria in comparison with falciparum malaria in Mumbai. J Assoc Physicians India. 2012; 60:15–18 23777019.
8. Quispe AM, Pozo E, Guerrero E, Durand S, Baldeviano GC, Edgel KAet al. Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria? Am J Trop Med Hyg. 2014; 91(1):11–17. doi: 10.4269/ajtmh.12-0610 24752683
9. Rodriguez-Morales AJ, Bolívar-Mejía A, Alarcón-Olave C, Calvo-Betancourt LS. Plasmodium vivax malaria in Latin America. In: Franco-Paredes C, Santos-Preciado JI, editors. Neglected tropical diseases—latin America and the Caribbean. Vienna: Springer Vienna; 2015. p. 89–111.
10. Siqueira AM, Lacerda MV, Magalhães BM, Mourão MP, Melo GC, Alexandre MAet al. Characterization of Plasmodium vivax-associated admissions to reference hospitals in Brazil and India. BMC Med. 2015; 13:57. doi: 10.1186/s12916-015-0302-y 25889040
11. Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014; 13:481. doi: 10.1186/1475-2875-13-481 25486908
12. Kumar R, Saravu K. Severe vivax malaria: a prospective exploration at a tertiary healthcare centre in Southwestern India. Pathog Glob Health. 2017; 111(3):148–160. doi: 10.1080/20477724.2017.1309342 28367735
13. Maina RN, Walsh D, Gaddy C, Hongo G, Waitumbi J, Otieno L et al. Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya. Malar J. 2010; 9 Suppl 3:S4. doi: 10.1186/1475-2875-9-S3-S4 21144084
14. Bakhubaira S. Hematological parameters in severe complicated Plasmodium falciparum malaria among adults in Aden. Turk J Haematol. 2013; 30(4): 394–399. doi: 10.4274/Tjh.2012.0086 24385830
15. Gomes LT, Alves-Junior ER, Rodrigues-Jesus C, Nery AF, Gasquez-Martin TO, Fontes CJ. Angiopoietin-2 and angiopoietin-2/angiopoietin-1 ratio as indicators of potential severity of Plasmodium vivax malaria in patients with thrombocytopenia. PLoS One. 2014; 9(10):e109246. Erratum in: PLoS One. 2015; 10(1):e0117651. doi: 10.1371/journal.pone.0109246 25275496
16. Deng H, Qi X, Peng Y, Li J, Li H, Zhang Y et al. Diagnostic Accuracy of APRI, AAR, FIB-4, FI, and King Scores for Diagnosis of Esophageal Varices in Liver Cirrhosis: A Retrospective Study. Med Sci Monit. 2015; 21:3961–77. doi: 10.12659/MSM.895005 26687574
17. Mesquita TC, Martin TG, Alves ER Jr, Mello MB, Nery AF, Gomes LTet al. Changes in serum lipid profile in the acute and convalescentPlasmodium vivax malaria: A cohort study. Acta Trop. 2016; 163:1–6. doi: 10.1016/j.actatropica.2016.07.010 27461878
18. Suwarto S, Nainggolan L, Sinto R, Effendi B, Ibrahim E, Suryamin M et al. Dengue score: a proposed diagnostic predictor for pleural effusion and/or ascites in adults with dengue infection. BMC Infect Dis. 2016; 16:322. doi: 10.1186/s12879-016-1671-3 27391122
19. Zhang H, Xie Z, Xie X, Ou Y, Zeng W, Zhou Y. A novel predictor of severe dengue: The aspartate aminotransferase/platelet count ratio index (APRI). Med Virol. 2018; 90(5):803–809. doi: 10.1002/jmv.25021 29315684
20. Yen YH, Kuo FY, Kee KM, Chang KC, Tsai MC, Hu THet al. APRI and FIB-4 in the evaluation of liver fibrosis in chronic hepatitis C patients stratified by AST level. PLoS One. 2018; 13(6):e0199760. doi: 10.1371/journal.pone.0199760 29953518
21. Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HSet al. A simple noninvasive index can predict both signifcant fifbrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003; 38:518–26. doi: 10.1053/jhep.2003.50346 12883497
22. Köksal İ, Yılmaz G, Parlak M, Demirdal T, Kınıklı S, Candan M et al. Diagnostic value of combined serum biomarkers for the evaluation of liver fibrosis in chronic hepatitis C infection: A multicenter, noninterventional, observational study. Turk J Gastroenterol 2018; 29:464–72. doi: 10.5152/tjg.2018.16597 30249562
23. Reuling IJ, de Jong GM, Yap XZ, Asghar M, Walk J, van de Schans LAet al. Liver Injury in Uncomplicated Malaria is an Overlooked Phenomenon: An Observational Study. EBioMedicine. 2018; 36:131–139. doi: 10.1016/j.ebiom.2018.09.018 30243492
24. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de vigilância Epidemiológica. Guia prático de tratamento da malária no Brasil / Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica.–Brasília: Ministério da Saúde, 2010.
25. Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN. Identification of the Four Human Malaria Parasite Species in Field Samples by the Polymerase Chain Reaction and Detection of a High Prevalence of Mixed Infections. Mol Biochem Parasitol. 1993; 58(2):283–92. doi: 10.1016/0166-6851(93)90050-8 8479452
26. WHO. World Health Organization. Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg. 2000; 94 Suppl 1:S1–90. 11103309
27. Naing C1,2, Whittaker MA. Severe thrombocytopaenia in patients with vivax malaria compared to falciparum malaria: a systematic review and meta-analysis. Infect Dis Poverty. 2018; 7(1):10. doi: 10.1186/s40249-018-0392-9 29427995
28. Gupta NK, Bansal SB, Jain UC, Sahare K. Study of thrombocytopenia in patients of malaria. Trop Parasitol 2013; 3:58–61. doi: 10.4103/2229-5070.113914 23961443
29. Anstey NM, Price RN. Improving case definitions for severe malaria. PLoS Med. 2007; 4(8):e267. doi: 10.1371/journal.pmed.0040267 17713984
30. Tobón-Castaño A, Giraldo-Castro C, Blair S. Prognostic value of clinical and parasitological signs for severe malaria in patients from Colombia. Biomedica. 2012; 32 Suppl 1:79–94. doi: 10.1590/S0120-41572012000500010 23235817
31. Cruz LAB, Barral-Netto M, Andrade BB. Distinct inlflammatory profile underliies pathological increases in creatinine leves associated whith Plasmodium vivax malária clinical severity. PLoS Negl Trop Dis. 2018; 12(3):e0006306. doi: 10.1371/journal.pntd.0006306 29596409
32. Arévalo-Herrera M, Lopez-Perez M, Medina L, Moreno A, Gutierrez JB, Herrera S. Clinical profile of Plasmodium falciparum and Plasmodium vivax infections in low and unstable malaria transmission settings of Colombia. Malar J. 2015; 14:154. doi: 10.1186/s12936-015-0678-3 25889074
33. Nurleila S, Syafruddin D, Elyazar IRF, Baird JK. Serious and fatal illness associated with falciparum and vivax malaria among patients admitted to hospital at West Sumba in eastern Indonesia.Am J Trop Med Hyg. 2012; 87(1):41–49. doi: 10.4269/ajtmh.2012.11-0577 22764290
34. Gething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CAet al. A long-neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis. 2012; 6(9):e1814. doi: 10.1371/journal.pntd.0001814 22970336
35. Guedes JS, Guedes MLS. Quantificação do indicador de Nelson Moraes. Rev Saúde Pública. 1973; 7:103–13. doi: 10.1590/s0034-89101973000200004 4751048
36. Lampah DA, Yeo TW, Malloy M, Kenangalem E, Douglas NM, Ronaldo D et al. Severe malarial thrombocytopenia: a risk factor for mortality in Papua, Indonesia.J Infect Dis. 2015; 211(4):623–34. doi: 10.1093/infdis/jiu487 25170106
37. Liu X. Classification accuracy and cut point selection. Stat Med. 2012; 31(23):2676–86. doi: 10.1002/sim.4509 22307964
38. Rota M, Antolini L. Finding the optimal cut-point for Gaussian and Gamma distributed biomarkers. Computational Statistics & Data Analysis. 2014; 69:1–14. https://doi.org/10.1016/j.csda.2013.07.015
39. WHO. World Health Organization. Severe malaria. Trop Med Int Health. 2014; 19(Suppl: 1):7–131. doi: 10.1111/tmi.12313_2 25214480
40. Dayananda KK, Achur RN, Gowda DC. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J Vector Borne Dis. 2018; 55(1):1–8. doi: 10.4103/0972-9062.234620 29916441
41. WHO. World Health Organization. Library Cataloguing-in-Publication Data. Management of severe malaria: a practical handbook– 3rd ed. 2012
42. Leal-Santos FA, Silva SBR, Crepaldi NP, Nery AF, Martin TOG, Alves-Junior ERet al. Altered platelet indices as potential markers of severe and complicated malaria caused by Plasmodium vivax: a cross-sectional descriptive study. Malar J. 2013; 12:462. doi: 10.1186/1475-2875-12-462 24370274
43. Kaur H, Sehgal R, Kumar A, Sehgal A, Bansal D, Sultan AA. Screening and identification of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria. J Transl Med. 2018; 16(1):272. doi: 10.1186/s12967-018-1646-9 30286756
44. Jadhav UM, Patkar VS, Kadam NN. Thrombocytopenia in malaria—correlation with type and severity of malaria. J Assoc Physicians India. 2004; 52:615–8. 15847353
45. Lacerda MV, Mourão MP, Coelho HC, Santos JB. Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz. 2011; 106 Suppl 1:52–63. doi: 10.1590/s0074-02762011000900007 21881757
46. Arévalo-Herrera M, Rengifo L, Lopez-Perez M, Arce-Plata MI, García J, Herrera S. Complicated malaria in children and adults from three settings of the Colombian Pacific Coast: A prospective study. PLoS One. 2017; 12(9):e0185435. doi: 10.1371/journal.pone.0185435 28945797
47. Lee J, Kim MY, Kang SH, Kim J, Uh Y, Yoon KJet al. The gamma-glutamyl transferase to platelet ratio and the FIB-4 score are noninvasive markers to determine the severity of liver fibrosis in chronic hepatitis B infection. Br J Biomed Sci. 2018; 75(3):128–132. doi: 10.1080/09674845.2018.1459147 29893189
48. Paik N, Sinn DH, Lee JH, Oh IS, Kim JH, Kang W et al. Non-invasive tests for liver disease severity and the hepatocellular carcinoma risk in chronic hepatitis B patients with low-level viremia. Liver Int. 2018; 38(1):68–75. doi: 10.1111/liv.13489 28581248
49. Gonsalkorala ES, Cannon MD, Lim TY, Penna L, Willliamson C, Heneghan MA. Non-Invasive Markers (ALBI and APRI) Predict Pregnancy Outcomes in Women With Chronic Liver Disease. Am J Gastroenterol. 2019; 114(2):267–275. doi: 10.1038/s41395-018-0181-x 29973705
50. Wu H, Sheng L, Wang Q, Bao H, Miao Q, Xiao X et al. Performance of transient elastography in assessing liver fibrosis in patients with autoimmune hepatitis-primary biliary cholangitis overlap syndrome. World J Gastroenterol. 2018; 24(6):737–743. doi: 10.3748/wjg.v24.i6.737 29456412
51. Şaşmaz Mİ, Ayvaz MA, Dülger AC, Kuday-Kaykısız EK, Güven R. Aspartate-aminotransferase to platelet ratio index score for predicting HELLP syndrome. Am J Emerg Med. 2019 Feb 12. https://doi.org/10.1016/j.ajem.2019.02.014 30777375
52. Price JC, Seaberg EC, Stosor V, Witt MD, Lellock CD, Thio CL. Aspartate aminotransferase-to-platelet ratio index increases significantly 3 years prior to liver-related death in HIV-hepatitis-coinfected men. AIDS. 2018; 32(17):2636–2638. doi: 10.1097/QAD.0000000000001977 30096072
53. Wiesner R, Edwards E, Freeman R, Harper A, Kim R, Kamath P et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology. 2003; 124:91–96. doi: 10.1053/gast.2003.50016 12512033
54. Shen SL, Fu SJ, Chen B, Kuang M, Li SQ, Hua YPet al. Preoperative aspartate aminotransferase to platelet ratio is an independent prognostic factor for hepatitis Binduced hepatocellular carcinoma after hepatic resection. Ann Surg Oncol. 2014; 21:3802–3809. doi: 10.1245/s10434-014-3771-x 24849520
55. Hann HW, Wan S, Lai Y, Hann RS, Myers RE, Patel F et al. Aspartate aminotransferase to platelet ratio index as a prospective predictor of hepatocellular carcinoma risk in patients with chronic hepatitis B virus infection. J Gastroenterol Hepatol. 2015; 30:131–138. doi: 10.1111/jgh.12664 24995497
56. Zhijian Y, Hui L, Weiming Y, Zhanzhou L, Zhong C, Jinxin Z et al. Role of the Aspartate Transaminase and Platelet Ratio Index in Assessing Hepatic Fibrosis and Liver Inflammation in Adolescent Patients with HBeAg-Positive Chronic Hepatitis B. Gastroenterol Res Pract. 2015; 2015:906026. doi: 10.1155/2015/906026 26236336
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF