High salinity tolerance of invasive blue catfish suggests potential for further range expansion in the Chesapeake Bay region
Autoři:
Vaskar Nepal aff001; Mary C. Fabrizio aff001
Působiště autorů:
Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224770
Souhrn
In estuaries, salinity is believed to limit the colonization of brackish water habitats by freshwater species. Blue catfish Ictalurus furcatus, recognized as a freshwater species, is an invasive species in tidal rivers of the Chesapeake Bay. Salinity tolerance of this species, though likely to determine its potential range expansion and dispersal in estuarine habitats, is not well-known. To address this issue, we subjected blue catfish to a short-term salinity tolerance experiment and found that this species tolerates salinities higher than most freshwater fishes and that larger blue catfish tolerate elevated salinities for longer periods compared with smaller individuals. Our results are supported by spatially extensive, long-term fisheries surveys in the Chesapeake Bay region, which revealed a gradual (1975–2017) down-estuary range expansion of blue catfish from tidal freshwater areas to habitats exceeding 10 psu [practical salinity units] and that large blue catfish (> 200 mm fork length) occur in salinities greater than 10 psu in Chesapeake Bay tributaries. Habitat suitability predictions based on our laboratory results indicate that blue catfish can use brackish habitats to colonize new river systems, particularly during wet months when salinity decreases throughout the tidal rivers of the Chesapeake Bay.
Klíčová slova:
Salinity – Fish physiology – Fresh water – Rivers – Surface water – Canals – Freshwater fish – Catfish
Zdroje
1. Bœuf G, Payan P. How should salinity influence fish growth? Comp Biochem Physiol C Toxicol Pharmacol. 2001;130: 411–423. doi: 10.1016/S1532-0456(01)00268-X 11738629
2. Paavola M, Olenin S, Leppäkoski E. Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuar Coast Shelf S. 2005;64: 738–750.
3. James KR, Cant B, Ryan T. Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Aust J Bot. 2003;51: 703–713.
4. Hill RW, Wyse GA, Anderson M. Animal physiology. Second edition. Massachusetts, USA: Sinauer Associates Inc. Publishers; 2008.
5. Potter IC, Tweedley JR, Elliott M, Whitfield AK. The ways in which fish use estuaries: a refinement and expansion of the guild approach. Fish Fish. 2015;16: 230–239. doi: 10.1111/faf.12050
6. Vetemaa M, Eschbaum R, Albert A, Saat T. Distribution, sex ratio and growth of Carassius gibelio (Bloch) in coastal and inland waters of Estonia (north-eastern Baltic Sea). J Appl Ichthyol. 2005;21: 287–291. doi: 10.1111/j.1439-0426.2005.00680.x
7. Fuller PL, Nico LG, Williams JD. Nonindigenous fishes introduced into inland waters of the United States. Bethesda, Maryland: American Fisheries Society; 1999.
8. Schloesser RW, Fabrizio MC, Latour RJ, Garman GC, Greenlee RS, Groves M, et al. Ecological role of blue catfish in Chesapeake Bay communities and implications for management. In: Michaletz PH, Travnichek VH, editors. Conservation, ecology, and management of catfish: the second international symposium. Bethesda, Maryland; 2011. pp. 369–382. http://www.vims.edu/people/latour_rj/pubs/Schloesser_et_al_2011.pdf
9. Fabrizio MC, Tuckey TD, Latour RJ, White GC, Norris AJ. Tidal habitats support large numbers of invasive blue catfish in a Chesapeake Bay subestuary. Estuaries Coasts. 2018;41: 827–840. doi: 10.1007/s12237-017-0307-1
10. ICTF (Invasive Catfishes Task Force). Final report of the sustainable fisheries goal implementation team invasive catfish task force. Annapolis, Maryland: NOAA Chesapeake Bay Program Office; 2014.
11. Schmitt JD, Peoples BK, Castello L, Orth DJ. Feeding ecology of generalist consumers: a case study of invasive blue catfish Ictalurus furcatus in Chesapeake Bay, Virginia, USA. Environ Biol Fish. 2019;102: 443–465.
12. Kültz D. Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol. 2015;218: 1907–1914. doi: 10.1242/jeb.118695 26085667
13. Najjar RG, Pyke CR, Adams MB, Breitburg D, Hershner C, Kemp M, et al. Potential climate-change impacts on the Chesapeake Bay. Estuar Coast Shelf S. 2010;86: 1–20.
14. Allen KO, Avault JW. Notes on the relative salinity tolerance of channel and blue catfish. Prog Fish-Cult. 1971;33: 135–137. doi: 10.1577/1548-8640(1971)33[135:NOTRST]2.0.CO;2
15. Du J, Shen J. Decoupling the influence of biological and physical processes on the dissolved oxygen in the Chesapeake Bay. J Geophys Res Oceans. 2015;120: 78–93. doi: 10.1002/2014JC010422
16. Tuckey TD, Fabrizio MC. Estimating relative juvenile abundance of ecologically important finfish in the Virginia portion of Chesapeake Bay. Project #F-104-R-21. Annual Report to Virginia Marine Resources Commission. Gloucester Point: Virginia Institute of Marine Science; 2017. http://www.vims.edu/research/departments/fisheries/programs/juvenile_surveys/data_products/reports/TrawlAnnualReport_2015.pdf
17. Kefford BJ, Papas PJ, Metzeling L, Nugegoda D. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity? Environ Pollut. 2004;129: 355–362. doi: 10.1016/j.envpol.2003.12.005 15016457
18. Horodysky AZ, Cooke SJ, Brill RW. Physiology in the service of fisheries science: Why thinking mechanistically matters. Rev Fish Biol Fisher. 2015;25: 425–447. doi: 10.1007/s11160-015-9393-y
19. Brown JA, Scott DM, Wilson RW. Do estuaries act as saline bridges to allow invasion of new freshwater systems by non-indigenous fish species? In: Gherardi F, editor. Biological invaders in inland waters: Profiles, distribution, and threats. Dordrecht: Springer Netherlands; 2007. pp. 401–414. http://link.springer.com/10.1007/978-1-4020-6029-8_21
20. Koenker R, Ng P, Portnoy S. Quantile smoothing splines. Biometrika. 1994;81: 673–680.
21. Cade BS, Noon BR. A gentle introduction to quantile regression for ecologists. Front Ecol Environ. 2003;1: 412–420.
22. Davis MW. Fish stress and mortality can be predicted using reflex impairment. Fish Fish. 2010;11: 1–11. doi: 10.1111/j.1467-2979.2009.00331.x
23. Blessing JJ, Marshall JC, Balcombe SR. Humane killing of fishes for scientific research: a comparison of two methods. J Fish Biol. 2010;76: 2571–2577. doi: 10.1111/j.1095-8649.2010.02633.x 20557609
24. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6: 461–464.
25. Cox DR. Regression models and life tables (with discussion). J R Stat Soc B. 1972;34: 187–220.
26. Lin DY, Wei L-J. The robust inference for the Cox proportional hazards model. J Am Stat Assoc. 1989;84: 1074–1078.
27. Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;80: 27–38. doi: 10.2307/2336755
28. Hamilton MA, Russo RC, Thurston RV. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol. 1977;11: 714–719.
29. Shigesada N, Kawasaki K, Takeda Y. Modeling stratified diffusion in biological invasions. Am Nat. 1995;146: 229–251.
30. Gotelli NJ. A primer of ecology. Fourth. Sunderland, Massachusetts, USA: Sinauer Associates; 2008.
31. Beatty SJ, Morgan DL, Rashnavadi M, Lymbery AJ. Salinity tolerances of endemic freshwater fishes of south-western Australia: implications for conservation in a biodiversity hotspot. Mar Freshw Res. 2011;62: 91. doi: 10.1071/MF10100
32. Newman MC, Aplin MS. Enhancing toxicity data interpretation and prediction of ecological risk with survival time modeling: an illustration using sodium chloride toxicity to mosquitofish (Gambusia holbrooki). Aquat Toxicol. 1992;23: 85–96.
33. Brion MA, Guillermo JG Jr, Uy C, Chavez J, Carandang JS IV. Salinity tolerance of introduced South American sailfin catfishes (Loricariidae: Pterygoplichthys GILL 1858). Philippine Journal of Science. 2013;142: 13–19.
34. Chervinski J. Salinity tolerance of young catfish, Clarias lazera (Burchell). J Fish Biol. 1984;25: 147–149. doi: 10.1111/j.1095-8649.1984.tb04861.x
35. Bringolf RB, Kwak TJ, Cope WG, Larimore MS. Salinity tolerance of flathead catfish: implications for dispersal of introduced populations. Trans Am Fish Soc. 2005;134: 927–936. doi: 10.1577/T04-195.1
36. Clemens HP, Jones WH. Toxicity of brine water from oil wells. Trans Am Fish Soc. 1955;84: 97–109. doi: 10.1577/1548-8659(1954)84[97:TOBWFO]2.0.CO;2
37. Kendall AW, Schwartz FJ. Lethal temperature and salinity tolerances of the white catfish, Ictalurus catus, from the Patuxent River, Maryland. Chesapeake Science. 1968;9: 103–108. doi: 10.2307/1351252
38. Anyanwu PE. Influence of salinity on survival of fingerlings of the estuarine catfish Chrysichthys nigrodigitatus (Lacépède). Aquaculture. 1991;99: 157–165. doi: 10.1016/0044-8486(91)90295-I
39. Tebo LB, McCoy EG. Effect of sea-water concentration on the reproduction and survival of largemouth bass and bluegills. Prog fish-cult. 1964;26: 99–106. doi: 10.1577/1548-8640(1964)26[99:EOSCOT]2.0.CO;2
40. Schofield P, Nico L. Salinity tolerance of non-native Asian swamp eels (Teleostei: Synbranchidae) in Florida, USA: comparison of three populations and implications for dispersal. Environ Biol Fish. 2009;85: 51–59. doi: 10.1007/s10641-009-9456-9
41. Allen PJ, McEnroe M, Forostyan T, Cole S, Nicholl MM, Hodge B, et al. Ontogeny of salinity tolerance and evidence for seawater-entry preparation in juvenile green sturgeon, Acipenser medirostris. J Comp Physiol B. 2011;181: 1045–1062. doi: 10.1007/s00360-011-0592-0 21630040
42. Schmidt-Nielsen K. Scaling: why is animal size so important? Cambridge University Press; 1984.
43. Altinok I, Galli SM, Chapman FA. Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon, Acipenser oxyrinchusde sotoi. Comp Biochem Physiol A Mol Integr Physiol. 1998;120: 609–616. doi: 10.1016/S1095-6433(98)10073-9
44. McEnroe M, Cech JJ. Osmoregulation in juvenile and adult white sturgeon, Acipenser transmontanus. Environ Biol Fish. 1985;14: 23–30.
45. McCormick SD. Ontogeny and evolution of salinity tolerance in anadromous salmonids: hormones and heterochrony. Estuaries. 1994;17: 26–33. doi: 10.2307/1352332
46. Watanabe WO, Kuo C-M, Huang M-C. Salinity tolerance of Nile tilapia fry (Oreochromis niloticus), spawned and hatched at various salinities. Aquaculture. 1985;48: 159–176. doi: 10.1016/0044-8486(85)90102-4
47. Madon S. Ecophysiology of juvenile California halibut Paralichthys californicus in relation to body size, water temperature and salinity. Mar Ecol Prog Ser. 2002;243: 235–249. doi: 10.3354/meps243235
48. Downie AT, Kieffer JD. The physiology of juvenile shortnose sturgeon (Acipenser brevirostrum) during an acute saltwater challenge. Can J Zool. 2016;94: 677–683. doi: 10.1139/cjz-2016-0013
49. Gutierre SMM, Vitule JRS, Freire CA, Prodocimo V. Physiological tools to predict invasiveness and spread via estuarine bridges: tolerance of Brazilian native and worldwide introduced freshwater fishes to increased salinity. Mar Freshw Res. 2014;65: 425. doi: 10.1071/MF13161
50. Gutierre SMM, Schofield PJ, Prodocimo V. Salinity and temperature tolerance of an emergent alien species, the Amazon fish Astronotus ocellatus. Hydrobiologia. 2016;777: 21–31. doi: 10.1007/s10750-016-2740-8
51. Beecham RV, Minchew CD, Parsons GR, LaBarre SB. Comparative swimming performance of juvenile blue catfish and hybrid catfish. North American Journal of Aquaculture. 2009;71: 348–353. doi: 10.1577/A08-034.1
52. Tuckey TD, Fabrizio MC, Norris AJ, Groves M. Low apparent survival and heterogeneous movement patterns of invasive blue catfish in a coastal river. Marine and Coastal Fisheries. 2017;9: 564–572. doi: 10.1080/19425120.2017.1381207
53. Reay WG, Moore KA. Impacts of tropical cyclone Isabel on shallow water quality of the York River estuary. In: Sellner KG, editor. Hurricane Isabel in Perspective Chesapeake Research Consortium. Edgewater, MD: CRC Publication 05–160; 2005. pp. 135–144.
54. Bunch AJ, Greenlee RS, Brittle EM. Blue catfish density and biomass in a tidal tributary in coastal Virginia. Northeast Nat. 2018;25: 333–340.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF