#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cerebellum-mediated trainability of eye and head movements for dynamic gazing


Autoři: Akiyoshi Matsugi aff001;  Naoki Yoshida aff002;  Satoru Nishishita aff002;  Yohei Okada aff004;  Nobuhiko Mori aff006;  Kosuke Oku aff001;  Shinya Douchi aff008;  Koichi Hosomi aff006;  Youichi Saitoh aff006
Působiště autorů: Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo, Daitou City, Osaka, Japan aff001;  Department of Research, Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Sakuranocho, Toyonaka City, Osaka, Japan aff002;  Department of Rehabilitation, Kansai Rehabilitation Hospital, Sakuranocho, Toyonaka City, Osaka, Japan aff003;  Faculty of Health Science, Kio University, Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara, Japan aff004;  Neurorehabilitation Research Center of Kio University, Koryo-cho, Kitakatsuragi-gun, Nara, Japan aff005;  Department of Neuromodulation and Neurosurgery, Office for University-Industry Collaboration, Osaka University, Osaka, Japan aff006;  Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan aff007;  Department of Rehabilitation, National Hospital Organization Kyoto Medical Center, Hukakusamukaihatacyo, Husimi-ku, Kyoto City, Kyoto, Japan aff008
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224458

Souhrn

Objective

To investigate whether gaze stabilization exercises (GSEs) improve eye and head movements and whether low-frequency cerebellar repetitive transcranial magnetic stimulation (rTMS) inhibits GSE trainability.

Methods

25 healthy adults (real rTMS, n = 12; sham rTMS, n = 13) were recruited. Real or sham rTMS was performed for 15 min (1 Hz, 900 stimulations). The center of the butterfly coil was set 1 cm below the inion in the real rTMS. Following stimulation, 10 trials of 1 min of a GSE were conducted at 1 min intervals. In the GSE, the subjects were instructed to stand upright and horizontally rotate their heads according to a beeping sound corresponding to 2 Hz and with a gaze point ahead of them. Electrooculograms were used to estimate the horizontal gaze direction of the right eye, and gyroscopic measurements were performed to estimate the horizontal head angular velocity during the GSE trials. The percentage change from the first trial of motion range of the eye and head was calculated for each measurement. The percent change of the eye/head range ratio was calculated to assess the synchronous changes of the eye and head movements as the exercise increased.

Results

Bayesian two-way analysis of variance showed that cerebellar rTMS affected the eye motion range and eye/head range ratio. A post hoc comparison (Bayesian t-test) showed evidence that the eye motion range and eye/head range ratio were reduced in the fifth, sixth, and seventh trials compared with the first trial sham stimulation condition.

Conclusions

GSEs can modulate eye movements with respect to head movements, and the cerebellum may be associated with eye–head coordination trainability for dynamic gazing during head movements.

Klíčová slova:

Analysis of variance – Eyes – Vision – Transcranial magnetic stimulation – Eye movements – Cerebellum – Reflexes – Moths and butterflies


Zdroje

1. Fang Y, Nakashima R, Matsumiya K, Kuriki I, Shioiri S. Eye-head coordination for visual cognitive processing. PLoS One. 2015;10(3):e0121035. Epub 2015/03/24. doi: 10.1371/journal.pone.0121035 25799510; PubMed Central PMCID: PMC4370616.

2. Noda H. Mossy fibres sending retinal-slip, eye, and head velocity signals to the flocculus of the monkey. J Physiol. 1986;379:39–60. Epub 1986/10/01. doi: 10.1113/jphysiol.1986.sp016240 3559999; PubMed Central PMCID: PMC1182884.

3. Mitsutake T, Sakamoto M, Ueta K, Oka S, Horikawa E. Poor gait performance is influenced with decreased vestibulo-ocular reflex in poststroke patients. Neuroreport. 2017;28(12):745–8. Epub 2017/06/24. doi: 10.1097/WNR.0000000000000841 28640006.

4. Morimoto H, Asai Y, Johnson EG, Lohman EB, Khoo K, Mizutani Y, et al. Effect of oculo-motor and gaze stability exercises on postural stability and dynamic visual acuity in healthy young adults. Gait Posture. 2011;33(4):600–3. Epub 2011/02/19. doi: 10.1016/j.gaitpost.2011.01.016 21334899.

5. Schmid R, Zambarbieri D. The role of the vestibular system in eye-head coordination and the generation of vestibular nystagmus. Adv Otorhinolaryngol. 1988;41:89–94. Epub 1988/01/01. doi: 10.1159/000416037 3265010.

6. Matsugi A, Ueta Y, Oku K, Okuno K, Tamaru Y, Nomura S, et al. Effect of gaze-stabilization exercises on vestibular function during postural control. Neuroreport. 2017;28(8):439–43. doi: 10.1097/WNR.0000000000000776 28368883.

7. Ueta Y, Matsugi A, Oku K, Okuno K, Tamaru Y, Nomura S, et al. Gaze stabilization exercises derive sensory reweighting of vestibular for postural control. J Phys Ther Sci. 2017;29(9):1494–6. Epub 2017/09/15. doi: 10.1589/jpts.29.1494 28931974; PubMed Central PMCID: PMC5599807.

8. Matsugi A, Iwata Y, Mori N, Horino H, Hiraoka K. Long latency electromyographic response induced by transcranial magnetic stimulation over the cerebellum preferentially appears during continuous visually guided manual tracking task. Cerebellum. 2013;12(2):147–54. doi: 10.1007/s12311-012-0402-6 22806979.

9. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42. Epub 1992/01/01. doi: 10.1146/annurev.ne.15.030192.002155 1575449.

10. Panouilleres M, Frismand S, Sillan O, Urquizar C, Vighetto A, Pelisson D, et al. Saccades and eye-head coordination in ataxia with oculomotor apraxia type 2. Cerebellum. 2013;12(4):557–67. Epub 2013/03/12. doi: 10.1007/s12311-013-0463-1 23475383.

11. Ito M. Cerebellar learning in the vestibulo-ocular reflex. Trends Cogn Sci. 1998;2(9):313–21. 21227227.

12. Shinmei Y, Yamanobe T, Fukushima J, Fukushima K. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation. J Neurophysiol. 2002;87(4):1836–49. Epub 2002/04/04. doi: 10.1152/jn.00150.2001 11929905.

13. Miles FA, Eighmy BB. Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations. J Neurophysiol. 1980;43(5):1406–25. doi: 10.1152/jn.1980.43.5.1406 6768851.

14. Hardwick RM, Lesage E, Miall RC. Cerebellar Transcranial Magnetic Stimulation: The Role of Coil Geometry and Tissue Depth. Brain Stimul. 2014. doi: 10.1016/j.brs.2014.04.009 24924734.

15. Matsugi A. Do changes in spinal reflex excitability elicited by transcranial magnetic stimulation differ based on the site of cerebellar stimulation? Somatosens Mot Res. 2018;35(2):80–5. Epub 2018/05/08. doi: 10.1080/08990220.2018.1465403 29732943.

16. Nagel M, Zangemeister WH. The effect of transcranial magnetic stimulation over the cerebellum on the synkinesis of coordinated eye and head movements. J Neurol Sci. 2003;213(1–2):35–45. Epub 2003/07/23. doi: 10.1016/s0022-510x(03)00145-x 12873753.

17. Klomjai W, Katz R, Lackmy-Vallee A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208–13. Epub 2015/09/01. doi: 10.1016/j.rehab.2015.05.005 26319963.

18. Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. Cerebellum. 2010;9(4):548–55. Epub 2010/07/29. doi: 10.1007/s12311-010-0193-6 20665254; PubMed Central PMCID: PMC2996540.

19. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. Epub 2013/10/22. doi: 10.1001/jama.2013.281053 24141714.

20. Nathaniel Barbara TAC. Interfacing with a speller using EOG glasses. 016 IEEE International Conference on Systems Man and Cybernetics (SMC). 2016:1069–74. doi: 10.1109/SMC.2016.7844384

21. Bhardwaj V VM. Effectiveness of gaze stability exercise on balance in healthy elderly population. Int J Physiother Res. 2014;2(4):642–7.

22. Haarmeier T, Kammer T. Effect of TMS on oculomotor behavior but not perceptual stability during smooth pursuit eye movements. Cereb Cortex. 2010;20(9):2234–43. Epub 2010/01/13. doi: 10.1093/cercor/bhp285 20064941.

23. Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3(3):161–9. Epub 2010/07/17. doi: 10.1016/j.brs.2009.10.001 20633445.

24. Zangemeister WH, Nagel M. Transcranial magnetic stimulation over the cerebellum delays predictive head movements in the coordination of gaze. Acta oto-laryngologica Supplementum. 2001;545:140–4. Epub 2001/10/27. doi: 10.1080/000164801750388324 11677729.

25. van Dun K, Bodranghien F, Manto M, Marien P. Targeting the Cerebellum by Noninvasive Neurostimulation: a Review. Cerebellum. 2017;16(3):695–741. Epub 2016/12/30. doi: 10.1007/s12311-016-0840-7 28032321.

26. Matsugi A, Okada Y. Cerebellar transcranial direct current stimulation modulates the effect of cerebellar transcranial magnetic stimulation on the excitability of spinal reflex. Neurosci Res. 2019. Epub 2019/02/23. doi: 10.1016/j.neures.2019.01.012 30794822.

27. Matsugi A, Mori N, Uehara S, Kamata N, Oku K, Mukai K, et al. Task dependency of the long-latency facilitatory effect on the soleus H-reflex by cerebellar transcranial magnetic stimulation. Neuroreport. 2014;25(17):1375–80. doi: 10.1097/WNR.0000000000000275 25325350.

28. Matsugi A, Kikuchi Y, Kaneko K, Seko Y, Odagaki M. Cerebellar transcranial magnetic stimulation facilitates excitability of spinal reflex, but does not affect cerebellar inhibition and facilitation in spinocerebellar ataxia. Neuroreport. 2018;29(10):808–13. doi: 10.1097/WNR.0000000000001036 29659444; PubMed Central PMCID: PMC5999368.

29. Matsugi A, Kamata N, Tanaka T, Hiraoka K. Long latency fluctuation of the finger movement evoked by cerebellar TMS during visually guided manual tracking task. Indian J Physiol Pharmacol. 2012;56(3):193–200. 23734432.

30. Tanaka H, Matsugi A, Okada Y. The effects of imaginary voluntary muscle contraction and relaxation on cerebellar brain inhibition. Neurosci Res. 2017. Epub 2017/11/14. doi: 10.1016/j.neures.2017.11.004 29154805.

31. Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007;176(3):440–7. Epub 2006/08/19. doi: 10.1007/s00221-006-0628-y 16917771.

32. Hiraoka K, Horino K, Yagura A, Matsugi A. Cerebellar TMS evokes a long latency motor response in the hand during a visually guided manual tracking task. Cerebellum. 2010;9(3):454–60. doi: 10.1007/s12311-010-0187-4 20549404.

33. Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2015;2015:222–5. doi: 10.1109/EMBC.2015.7318340 26736240.

34. Boayue NM, Csifcsak G, Puonti O, Thielscher A, Mittner M. Head models of healthy and depressed adults for simulating the electric fields of non-invasive electric brain stimulation. F1000Res. 2018;7:704. Epub 2018/12/12. doi: 10.12688/f1000research.15125.2 30505431; PubMed Central PMCID: PMC6241565.2.

35. Hoekstra R, Monden R, van Ravenzwaaij D, Wagenmakers EJ. Bayesian reanalysis of null results reported in medicine: Strong yet variable evidence for the absence of treatment effects. PLoS One. 2018;13(4):e0195474. Epub 2018/04/26. doi: 10.1371/journal.pone.0195474 29694370; PubMed Central PMCID: PMC5919013.

36. van Ravenzwaaij D, Monden R, Tendeiro JN, Ioannidis JPA. Bayes factors for superiority, non-inferiority, and equivalence designs. BMC Med Res Methodol. 2019;19(1):71. Epub 2019/03/31. doi: 10.1186/s12874-019-0699-7 30925900; PubMed Central PMCID: PMC6441196.

37. Dienes Z, Coulton S, Heather N. Using Bayes factors to evaluate evidence for no effect: examples from the SIPS project. Addiction. 2018;113(2):240–6. Epub 2017/08/15. doi: 10.1111/add.14002 28804980.

38. Peter H. Westfall WOJaJMU. A Bayesian Perspective on the Bonferroni Adjustment. Biometrika. 1997;84(2):9.

39. Team J. JASP (Version 0.10.1)[Computer software]. 2019.

40. Hobbs BP, Carlin BP. Practical Bayesian design and analysis for drug and device clinical trials. J Biopharm Stat. 2008;18(1):54–80. Epub 2007/12/29. doi: 10.1080/10543400701668266 18161542.

41. Zaslavsky BG. Bayesian hypothesis testing in two-arm trials with dichotomous outcomes. Biometrics. 2013;69(1):157–63. Epub 2012/09/26. doi: 10.1111/j.1541-0420.2012.01806.x 23002906.

42. Soetedjo R, Kojima Y, Fuchs AF. How cerebellar motor learning keeps saccades accurate. J Neurophysiol. 2019;121(6):2153–62. Epub 2019/04/18. doi: 10.1152/jn.00781.2018 30995136; PubMed Central PMCID: PMC6620692.


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#