#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Developmental conservation of microRNA gene localization at the nuclear periphery


Autoři: Eralda Salataj aff001;  Chrysoula Stathopoulou aff001;  Róbert A. Hafþórsson aff004;  Christoforos Nikolaou aff001;  Charalampos G. Spilianakis aff001
Působiště autorů: Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece aff001;  Department of Biology, University of Crete, Heraklion, Crete, Greece aff002;  Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece aff003;  Department of Biology, Lund University, Lund, Sweden aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223759

Souhrn

microRNAs are of vital importance for the regulation of the adaptive and innate immune responses, modulating gene expression at the post transcriptional level. Although there is cumulative information regarding the steady state mature microRNA levels and their respective targets, little is known about the effect of the three-dimensional chromatin architecture on the transcriptional regulation of microRNA gene loci. Here, we sought to investigate the effect of subnuclear localization on the transcriptional activation of eight murine microRNA loci in the immune system. Our results show that microRNA genes display a preferential monoallelic gene expression profile accompanied with perinuclear localization irrespectively of their transcription status or differentiation state. The expression profile and perinuclear localization are developmentally conserved while microRNA gene loci localization outside constitutive lamin associated domains is cross-species conserved. Our findings provide support for an active nuclear periphery and its role in chromatin organization of the non-coding genome.

Klíčová slova:

Chromatin – Gene expression – Genetic loci – Cell differentiation – MicroRNAs – DNA transcription – Thymocytes – T helper cells


Zdroje

1. Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature. 2007;447(7143):413–7. doi: 10.1038/nature05916 17522674.

2. Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature reviews Genetics. 2007;8(2):104–15. doi: 10.1038/nrg2041 17230197.

3. Clowney EJ, LeGros MA, Mosley CP, Clowney FG, Markenskoff-Papadimitriou EC, Myllys M, et al. Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell. 2012;151(4):724–37. doi: 10.1016/j.cell.2012.09.043 23141535; PubMed Central PMCID: PMC3659163.

4. Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. The Journal of clinical investigation. 2009;119(7):1825–36. doi: 10.1172/JCI37679 19587457; PubMed Central PMCID: PMC2701866.

5. Schreiber KH, Kennedy BK. When lamins go bad: nuclear structure and disease. Cell. 2013;152(6):1365–75. doi: 10.1016/j.cell.2013.02.015 23498943; PubMed Central PMCID: PMC3706202.

6. Yu M, Ren B. The Three-Dimensional Organization of Mammalian Genomes. Annual review of cell and developmental biology. 2017;33:265–89. doi: 10.1146/annurev-cellbio-100616-060531 28783961; PubMed Central PMCID: PMC5837811.

7. Zullo JM, Demarco IA, Pique-Regi R, Gaffney DJ, Epstein CB, Spooner CJ, et al. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell. 2012;149(7):1474–87. doi: 10.1016/j.cell.2012.04.035 22726435.

8. Mitchell JA, Fraser P. Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes & development. 2008;22(1):20–5. doi: 10.1101/gad.454008 18172162; PubMed Central PMCID: PMC2151011.

9. van Steensel B, Belmont AS. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression. Cell. 2017;169(5):780–91. doi: 10.1016/j.cell.2017.04.022 28525751; PubMed Central PMCID: PMC5532494.

10. Williams RR, Azuara V, Perry P, Sauer S, Dvorkina M, Jorgensen H, et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. Journal of cell science. 2006;119(Pt 1):132–40. doi: 10.1242/jcs.02727 16371653.

11. Stratigi K, Kapsetaki M, Aivaliotis M, Town T, Flavell RA, Spilianakis CG. Spatial proximity of homologous alleles and long noncoding RNAs regulate a switch in allelic gene expression. Proc Natl Acad Sci U S A. 2015;112(13):E1577–86. Epub 2015/03/15. doi: 10.1073/pnas.1502182112 25770217; PubMed Central PMCID: PMC4386343.

12. Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Molecular cell. 2010;38(4):603–13. doi: 10.1016/j.molcel.2010.03.016 20513434; PubMed Central PMCID: PMC5975946.

13. Kalverda B, Pickersgill H, Shloma VV, Fornerod M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell. 2010;140(3):360–71. doi: 10.1016/j.cell.2010.01.011 20144760.

14. Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell. 2004;117(4):427–39. doi: 10.1016/s0092-8674(04)00448-9 15137937.

15. Jacinto FV, Benner C, Hetzer MW. The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes & development. 2015;29(12):1224–38. doi: 10.1101/gad.260919.115 26080816; PubMed Central PMCID: PMC4495395.

16. Vaquerizas JM, Suyama R, Kind J, Miura K, Luscombe NM, Akhtar A. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS genetics. 2010;6(2):e1000846. doi: 10.1371/journal.pgen.1000846 20174442; PubMed Central PMCID: PMC2820533.

17. Van de Vosse DW, Wan Y, Wozniak RW, Aitchison JD. Role of the nuclear envelope in genome organization and gene expression. Wiley interdisciplinary reviews Systems biology and medicine. 2011;3(2):147–66. doi: 10.1002/wsbm.101 21305702; PubMed Central PMCID: PMC3050641.

18. Bohmdorfer G, Wierzbicki AT. Control of Chromatin Structure by Long Noncoding RNA. Trends in cell biology. 2015;25(10):623–32. doi: 10.1016/j.tcb.2015.07.002 26410408; PubMed Central PMCID: PMC4584417.

19. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7. doi: 10.1038/nature07672 19182780; PubMed Central PMCID: PMC2754849.

20. Sun Q, Hao Q, Prasanth KV. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends in genetics: TIG. 2018;34(2):142–57. doi: 10.1016/j.tig.2017.11.005 29249332; PubMed Central PMCID: PMC6002860.

21. van Wolfswinkel JC, Ketting RF. The role of small non-coding RNAs in genome stability and chromatin organization. Journal of cell science. 2010;123(Pt 11):1825–39. doi: 10.1242/jcs.061713 20484663.

22. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. doi: 10.1016/s0092-8674(04)00045-5 14744438.

23. Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nature reviews Immunology. 2016;16(5):279–94. doi: 10.1038/nri.2016.40 27121651.

24. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal. 2004;23(20):4051–60. doi: 10.1038/sj.emboj.7600385 15372072; PubMed Central PMCID: PMC524334.

25. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna. 2004;10(12):1957–66. doi: 10.1261/rna.7135204 15525708; PubMed Central PMCID: PMC1370684.

26. Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ. Primary microRNA transcripts are processed co-transcriptionally. Nature structural & molecular biology. 2008;15(9):902–9. 19172742.

27. Kim YK, Kim VN. Processing of intronic microRNAs. The EMBO journal. 2007;26(3):775–83. doi: 10.1038/sj.emboj.7601512 17255951; PubMed Central PMCID: PMC1794378.

28. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature cell biology. 2009;11(3):228–34. doi: 10.1038/ncb0309-228 19255566.

29. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208. doi: 10.1016/s0092-8674(03)00759-1 14567917.

30. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & development. 2001;15(20):2654–9. doi: 10.1101/gad.927801 11641272; PubMed Central PMCID: PMC312808.

31. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–8. doi: 10.1126/science.1062961 11452083.

32. Doxaki C, Kampranis SC, Eliopoulos AG, Spilianakis C, Tsatsanis C. Coordinated Regulation of miR-155 and miR-146a Genes during Induction of Endotoxin Tolerance in Macrophages. J Immunol. 2015;195(12):5750–61. Epub 2015/11/06. doi: 10.4049/jimmunol.1500615 26538391.

33. Stathopoulou C, Kapsetaki M, Stratigi K, Spilianakis C. Long non-coding RNA SeT and miR-155 regulate the Tnfalpha gene allelic expression profile. PloS one. 2017;12(9):e0184788. doi: 10.1371/journal.pone.0184788 28910376; PubMed Central PMCID: PMC5599032.

34. Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T. Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping. Cell. 2015;162(4):911–23. doi: 10.1016/j.cell.2015.07.035 26276637; PubMed Central PMCID: PMC4538709.

35. Zhao H, Sifakis EG, Sumida N, Millan-Arino L, Scholz BA, Svensson JP, et al. PARP1- and CTCF-Mediated Interactions between Active and Repressed Chromatin at the Lamina Promote Oscillating Transcription. Molecular cell. 2015;59(6):984–97. doi: 10.1016/j.molcel.2015.07.019 26321255.

36. Meuleman W, Peric-Hupkes D, Kind J, Beaudry JB, Pagie L, Kellis M, et al. Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome research. 2013;23(2):270–80. doi: 10.1101/gr.141028.112 23124521; PubMed Central PMCID: PMC3561868.

37. Amendola M, van Steensel B. Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells. EMBO reports. 2015;16(5):610–7. doi: 10.15252/embr.201439789 25784758; PubMed Central PMCID: PMC4428043.

38. Schneider R, Grosschedl R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes & development. 2007;21(23):3027–43. doi: 10.1101/gad.1604607 18056419.

39. Dillon N. The impact of gene location in the nucleus on transcriptional regulation. Developmental cell. 2008;15(2):182–6. doi: 10.1016/j.devcel.2008.07.013 18694558.

40. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS. Long-range directional movement of an interphase chromosome site. Current biology: CB. 2006;16(8):825–31. doi: 10.1016/j.cub.2006.03.059 16631592.

41. Ktistaki E, Garefalaki A, Williams A, Andrews SR, Bell DM, Foster KE, et al. CD8 locus nuclear dynamics during thymocyte development. J Immunol. 2010;184(10):5686–95. Epub 2010/04/21. doi: 10.4049/jimmunol.1000170 20404270.

42. Kim SH, McQueen PG, Lichtman MK, Shevach EM, Parada LA, Misteli T. Spatial genome organization during T-cell differentiation. Cytogenetic and genome research. 2004;105(2–4):292–301. doi: 10.1159/000078201 15237218.

43. Rawlings JS, Gatzka M, Thomas PG, Ihle JN. Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. The EMBO journal. 2011;30(2):263–76. doi: 10.1038/emboj.2010.314 21169989; PubMed Central PMCID: PMC3025460.

44. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA. Interchromosomal associations between alternatively expressed loci. Nature. 2005;435(7042):637–45. Epub 2005/05/10. doi: 10.1038/nature03574 15880101.

45. Breuer M, Ohkura H. A negative loop within the nuclear pore complex controls global chromatin organization. Genes & development. 2015;29(17):1789–94. doi: 10.1101/gad.264341.115 26341556; PubMed Central PMCID: PMC4573852.

46. D'Angelo MA. Nuclear pore complexes as hubs for gene regulation. Nucleus. 2018;9(1):142–8. doi: 10.1080/19491034.2017.1395542 29095096; PubMed Central PMCID: PMC5973259.

47. Starling S. Gene regulation: The nuclear pore—a scaffold for inducible genes. Nature reviews Genetics. 2017;18(5):273. doi: 10.1038/nrg.2017.29 28400601.

48. Hao B, Naik AK, Watanabe A, Tanaka H, Chen L, Richards HW, et al. An anti-silencer- and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development. The Journal of experimental medicine. 2015;212(5):809–24. doi: 10.1084/jem.20142207 25847946; PubMed Central PMCID: PMC4419350.

49. Lee HY, Johnson KD, Boyer ME, Bresnick EH. Relocalizing genetic loci into specific subnuclear neighborhoods. The Journal of biological chemistry. 2011;286(21):18834–44. doi: 10.1074/jbc.M111.221481 21398517; PubMed Central PMCID: PMC3099700.

50. Levantini E, Lee S, Radomska HS, Hetherington CJ, Alberich-Jorda M, Amabile G, et al. RUNX1 regulates the CD34 gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. The EMBO journal. 2011;30(19):4059–70. doi: 10.1038/emboj.2011.285 21873977; PubMed Central PMCID: PMC3209778.

51. Igarashi K, Hoshino H, Muto A, Suwabe N, Nishikawa S, Nakauchi H, et al. Multivalent DNA binding complex generated by small Maf and Bach1 as a possible biochemical basis for beta-globin locus control region complex. The Journal of biological chemistry. 1998;273(19):11783–90. doi: 10.1074/jbc.273.19.11783 9565602.

52. So AY, Garcia-Flores Y, Minisandram A, Martin A, Taganov K, Boldin M, et al. Regulation of APC development, immune response, and autoimmunity by Bach1/HO-1 pathway in mice. Blood. 2012;120(12):2428–37. doi: 10.1182/blood-2012-04-426247 22791292; PubMed Central PMCID: PMC3448256.

53. Jeong G, Lim YH, Kim YK. Precise mapping of the transcription start sites of human microRNAs using DROSHA knockout cells. BMC genomics. 2016;17(1):908. doi: 10.1186/s12864-016-3252-7 27835943; PubMed Central PMCID: PMC5106785.

54. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 2008;453(7197):948–51. doi: 10.1038/nature06947 18463634.

55. Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature genetics. 2006;38(9):1005–14. doi: 10.1038/ng1852 16878134.

56. Ikegami K, Egelhofer TA, Strome S, Lieb JD. Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2. Genome biology. 2010;11(12):R120. doi: 10.1186/gb-2010-11-12-r120 21176223; PubMed Central PMCID: PMC3046480.

57. Deng Q, Ramskold D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343(6167):193–6. doi: 10.1126/science.1245316 24408435.

58. Reinius B, Sandberg R. Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet. 2015;16(11):653–64. doi: 10.1038/nrg3888 26442639.

59. Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet. 2010;19(18):3566–82. doi: 10.1093/hmg/ddq272 20610438.

60. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32. doi: 10.1038/35047554 11253064.

61. Lee JT. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell. 2000;103(1):17–27. doi: 10.1016/s0092-8674(00)00101-x 11051544.

62. Tian D, Sun S, Lee JT. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell. 2010;143(3):390–403. doi: 10.1016/j.cell.2010.09.049 21029862; PubMed Central PMCID: PMC2994261.

63. Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004;14(9):1741–8. doi: 10.1101/gr.2743304 15310658; PubMed Central PMCID: PMC515320.

64. Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, Tani T, et al. Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging. Molecular cell. 2017;67(2):282–93 e7. doi: 10.1016/j.molcel.2017.06.018 28712725.

65. Fiserova J, Efenberkova M, Sieger T, Maninova M, Uhlirova J, Hozak P. Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data. Journal of cell science. 2017;130(12):2066–77. doi: 10.1242/jcs.198424 28476938.

66. Xu J, Ma H, Jin J, Uttam S, Fu R, Huang Y, et al. Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells. Cell reports. 2018;24(4):873–82. doi: 10.1016/j.celrep.2018.06.085 30044984; PubMed Central PMCID: PMC6154382.

67. Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis of chromosome architecture. Nature reviews Molecular cell biology. 2016;17(12):743–55. doi: 10.1038/nrm.2016.104 27580841; PubMed Central PMCID: PMC5763923.

68. Wang H, Xu X, Nguyen CM, Liu Y, Gao Y, Lin X, et al. CRISPR-Mediated Programmable 3D Genome Positioning and Nuclear Organization. Cell. 2018. doi: 10.1016/j.cell.2018.09.013 30318144.

69. Ragoczy T, Bender MA, Telling A, Byron R, Groudine M. The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 2006;20(11):1447–57. doi: 10.1101/gad.1419506 16705039; PubMed Central PMCID: PMC1475758.

70. Wiblin AE, Cui W, Clark AJ, Bickmore WA. Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells. Journal of cell science. 2005;118(Pt 17):3861–8. doi: 10.1242/jcs.02500 16105879.

71. Zink D, Amaral MD, Englmann A, Lang S, Clarke LA, Rudolph C, et al. Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol. 2004;166(6):815–25. doi: 10.1083/jcb.200404107 15364959; PubMed Central PMCID: PMC2172106.

72. Robson MI, de Las Heras JI, Czapiewski R, Sivakumar A, Kerr ARW, Schirmer EC. Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments. Genome Res. 2017;27(7):1126–38. doi: 10.1101/gr.212308.116 28424353; PubMed Central PMCID: PMC5495065.

73. Deligianni C, Spilianakis CG. Long-range genomic interactions epigenetically regulate the expression of a cytokine receptor. EMBO Rep. 2012;13(9):819–26. Epub 2012/07/28. doi: 10.1038/embor.2012.112 22836578; PubMed Central PMCID: PMC3432804.

74. Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol. 2006;7(7):540–6. doi: 10.1038/nrm1938 16723974.

75. Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol. 2009;10(2):116–25. doi: 10.1038/nrm2621 19165214; PubMed Central PMCID: PMC4118578.

76. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303(5654):83–6. doi: 10.1126/science.1091903 14657504.

77. Luo L, Gassman KL, Petell LM, Wilson CL, Bewersdorf J, Shopland LS. The nuclear periphery of embryonic stem cells is a transcriptionally permissive and repressive compartment. Journal of cell science. 2009;122(Pt 20):3729–37. doi: 10.1242/jcs.052555 19773359; PubMed Central PMCID: PMC2758804.

78. Jost KL, Haase S, Smeets D, Schrode N, Schmiedel JM, Bertulat B, et al. 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res. 2011;39(17):e113. doi: 10.1093/nar/gkr486 21700670; PubMed Central PMCID: PMC3177216.

79. Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, Bickmore WA. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science. 2014;346(6214):1238–42. doi: 10.1126/science.1259587 25477464.

80. Hadjimichael C, Nikolaou C, Papamatheakis J, Kretsovali A. MicroRNAs for Fine-Tuning of Mouse Embryonic Stem Cell Fate Decision through Regulation of TGF-beta Signaling. Stem Cell Reports. 2016;6(3):292–301. doi: 10.1016/j.stemcr.2016.01.004 26876669; PubMed Central PMCID: PMC4788761.

81. Buchwalter A, Kaneshiro JM, Hetzer MW. Coaching from the sidelines: the nuclear periphery in genome regulation. Nature reviews Genetics. 2019;20(1):39–50. doi: 10.1038/s41576-018-0063-5 30356165; PubMed Central PMCID: PMC6355253.

82. Toda T, Hsu JY, Linker SB, Hu L, Schafer ST, Mertens J, et al. Nup153 Interacts with Sox2 to Enable Bimodal Gene Regulation and Maintenance of Neural Progenitor Cells. Cell stem cell. 2017;21(5):618–34 e7. doi: 10.1016/j.stem.2017.08.012 28919367.

83. Ibarra A, Benner C, Tyagi S, Cool J, Hetzer MW. Nucleoporin-mediated regulation of cell identity genes. Genes & development. 2016;30(20):2253–8. doi: 10.1101/gad.287417.116 27807035; PubMed Central PMCID: PMC5110992.

84. Liang Y, Franks TM, Marchetto MC, Gage FH, Hetzer MW. Dynamic association of NUP98 with the human genome. PLoS genetics. 2013;9(2):e1003308. doi: 10.1371/journal.pgen.1003308 23468646; PubMed Central PMCID: PMC3585015.

85. Franks TM, McCloskey A, Shokirev MN, Benner C, Rathore A, Hetzer MW. Nup98 recruits the Wdr82-Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes & development. 2017;31(22):2222–34. doi: 10.1101/gad.306753.117 29269482; PubMed Central PMCID: PMC5769767.

86. Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, et al. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell. 2013;154(4):914–27. doi: 10.1016/j.cell.2013.07.018 23953119.

87. Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS, Bienko M, et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell. 2015;163(1):134–47. doi: 10.1016/j.cell.2015.08.040 26365489; PubMed Central PMCID: PMC4583798.

88. Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements. 2011;1(1):8–17. doi: 10.4161/mge.1.1.15766 22016841; PubMed Central PMCID: PMC3190270.

89. Roberts TC. The MicroRNA Biology of the Mammalian Nucleus. Mol Ther Nucleic Acids. 2014;3:e188. doi: 10.1038/mtna.2014.40 25137140; PubMed Central PMCID: PMC4221600.

90. Tempel S, Pollet N, Tahi F. ncRNAclassifier: a tool for detection and classification of transposable element sequences in RNA hairpins. BMC Bioinformatics. 2012;13:246. doi: 10.1186/1471-2105-13-246 23009561; PubMed Central PMCID: PMC3495686.

91. Marini B, Kertesz-Farkas A, Ali H, Lucic B, Lisek K, Manganaro L, et al. Nuclear architecture dictates HIV-1 integration site selection. Nature. 2015;521(7551):227–31. doi: 10.1038/nature14226 25731161.

92. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. doi: 10.1093/bioinformatics/btq033 20110278; PubMed Central PMCID: PMC2832824.

93. Andreadis C, Nikolaou C, Fragiadakis GS, Tsiliki G, Alexandraki D. Rad9 interacts with Aft1 to facilitate genome surveillance in fragile genomic sites under non-DNA damage-inducing conditions in S. cerevisiae. Nucleic acids research. 2014;42(20):12650–67. doi: 10.1093/nar/gku915 25300486; PubMed Central PMCID: PMC4227768.

94. Savova V, Patsenker J, Vigneau S, Gimelbrant AA. dbMAE: the database of autosomal monoallelic expression. Nucleic acids research. 2016;44(D1):D753–6. doi: 10.1093/nar/gkv1106 26503248


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#