Molecular diet analysis of Anguilliformes leptocephalus larvae collected in the western North Pacific
Autoři:
Seinen Chow aff001; Nobuharu Inaba aff001; Satoshi Nagai aff001; Hiroaki Kurogi aff001; Yoji Nakamura aff001; Takashi Yanagimoto aff001; Hideki Tanaka aff003; Daisuke Hasegawa aff004; Taiga Asakura aff005; Jun Kikuchi aff005; Tsutomu Tomoda aff006; Taketoshi Kodama aff001
Působiště autorů:
National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Kanazawa, Yokohama, Japan
aff001; Civil Engineering Research Institute for Cold Region, Public Works Research Institute, Sapporo, Hokkaido, Japan
aff002; Aquaculture Research Institute, Kindai University, Higashimuro, Wakayama, Japan
aff003; Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
aff004; RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
aff005; Shibushi Station, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Shibushi, Kagoshima, Japan
aff006
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225610
Souhrn
Natural diets of leptocephalus larvae have been enigmatic. In this study, we collected DNA samples from the gut contents and body surface of leptocephali belonging to the five Anguilliform families (Anguillidae, Chlopsidae, Congridae, Muraenidae, and Serrivomeridae) from the northwest Pacific and performed next-generation 18S rDNA sequencing. Wide variety of eukaryotes was detected in both samples, from which eight eukaryotic groups (jellyfish, conoid parasite, tunicate, copepod, krill, segmented worm, fungi, and dinoflagellate) were selected on the basis of abundance. All groups except conoid parasites were common in both the samples. Cnidarian 18S rDNA reads were the most abundant in both the samples; however, the number of samples having cnidarian reads and the read counts were significantly higher in the body surface scraping samples than in the gut content samples, regardless of careful rinsing of the body surface. These results indicate that the cnidarian DNAs are most likely found because of cross contamination from the body surface and/or environment. 18S rDNA read counts of copepod and tunicate in the gut contents were greater than or comparable with those in the body surface scraping samples, which may correspond to the previous observations of fecal pellets and larvacean houses in the leptocephali gut. Thus, the present study supports previous implications that leptocephali utilize detritus materials, so called marine snow.
Klíčová slova:
Eukaryota – Polymerase chain reaction – Copepods – Larvae – Eels – Dinoflagellates – Jellyfish – Specimen scraping
Zdroje
1. Alexander EC. A contribution to the life history, biology and geographical distribution of the bonefish, Albula vulpes (Linnaeus). Dana Rep. 1961; 53: 1–51.
2. Hulet WH. Structure and functional development of the eel leptocephalus Ariosoma balearicum (DeLa Roche, 1809). Phil. Trans. Roy. Soc. B 1978; 252: 107–138.
3. Moser HG. Morphological and functional aspects of marine fish larvae. In Lasker R, editor. Marine fish larvae: morphology, ecology, and relation to fisheries. Seattle: University of Washington Press; 1981. pp. 90–131.
4. Otake T. Fine structure and function of the alimentary canal in leptocephali of the Japanese eel Anguilla japonica. Fish. Sci. 1996; 62: 28–34.
5. Mochioka N, Iwamizu M, Kanda K. Leptocephalus eel larvae will feed in aquaria. Env. Biol. Fish. 1993; 36: 381–384.
6. Otake T, Nogami N, Maruyama K. Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar. Ecol. Prog. Ser. 1993; 92: 27–34.
7. Mochioka N, and Iwamizu M. Diet of anguiloid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar. Biol. 1996; 125: 446–452.
8. Miller MJ, Otake T, Aoyama J, Wouthuyzen S, Suhariti HY, Sugeha S, Tsukamoto K. Observations of gut contents of leptocephali in the North Equatorial Current and Tomini Bay, Indonesia. Coast. Mar. Sci. 2011; 35: 277–288.
9. Miller M.J, Marohn L, Wysujack K, Freese M, Pohlmann JD, Westerberg H, et al. Morphology and gut contents of anguillid and marine eel larvae in the Sargasso Sea. Zool. Anzeig. 2019; 279: 138–151. https://doi.org/10.1016/j.jcz.2019.01.008
10. Tomoda T, Chow S, Kurogi H, Okazaki M, Ambe D, Furuita H, et al. Observations of gut contents of anguilliform leptocephali collected in the western North Pacific. Nippon Suisan Gakkaishi 2017; 84: 32–44. https://doi.org/10.2331/suisan.17-00025 (in Japanese with English abstract)
11. Govoni J. Feeding on protists and particulates by the leptocephali of the worm eels Myrophis spp. (Teleostei, Anguilliformes, Ophichthidae), and the potential energy contribution of large aloricate protozoa. Sci. Mar. 2010; 74: 339–344. https://doi.org/10.3989/scimar.2010.74n233
12. Riemann L, Alfredsson H, Hansen MM, Als TD, Nielsen TG, Munk P, et al. Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biol. Lett. 2010; 6: 819–822. doi: 10.1098/rsbl.2010.0411 20573615
13. Terahara T, Chow S, Kurogi H, Lee S-H, Tsukamoto K, Mochioka N, et al. Efficiency of peptide nucleic acid-directed PCR clamping and its application in the investigation of natural diets of the Japanese eel leptocephali. PLoS One 2011; 6: e25715. doi: 10.1371/journal.pone.0025715 22069444
14. Ayala DJ, Munk P, Lundgreen RBC, Traving SJ, Jaspers C, Jørgensen TS, et al. Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci. Rep. 2018; 8: 6156. doi: 10.1038/s41598-018-24388-x 29670123
15. Chow S, Kurogi H, Katayama S, Ambe D, Okazaki M, Watanabe T, et al. Japanese eel Anguilla japonica do not assimilate nutrition during the oceanic spawning migration: evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 2010; 402: 233–238. https://doi.org/10.3354/meps08448
16. Miyazaki S, Kim H-Y, Zenimoto K, Kitagawa T, Miller MJ, Kimura S. Stable isotope analysis of two species of anguilliform leptocephali (Anguilla japonica and Ariosoma major) relative to their feeding depth in the North Equatorial Current region. Mar. Biol. 2011; 158: 2555–2564. https://doi.org/10.1007/s00227-011-1756-x
17. Miller MJ, Chikaraishi Y, Ogawa NO, Yamada Y, Tsukamoto K, Ohkouchi N. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol. Lett. 2013; 9: 20120826. doi: 10.1098/rsbl.2012.0826 23134783
18. Feunteun E, Miller MJ, Carpentier A, Aoyama J, Dupuy C, Kuroki M, et al. Stable isotopic composition of anguilliform leptocephali and other food web components from west of the Mascarene Plateau. Prog. Oceanogr. 2015; 137: 69–83. https://doi.org/10.1016/j.pocean.2015.05.024
19. Quattrini AM, McClain-Counts J, Artabane SJ, Roa-Varón A, Mclver TC, Rhode M, Ross SW. Assemblage structure, vertical distributions and stable-isotope compositions of anguilliform leptocephali in the Gulf of Mexico. J. Fish Biol. 2019; 94: 621–647. doi: 10.1111/jfb.13933 30762230
20. Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G. The Simple Fool’s Guide to PCR. version 2. Honolulu: University of Hawaii; 1991.
21. Chow S, Kurogi H, Yamamoto T, Tomoda T, Mochioka N, Shirotori F, et al. Reproductive isolation between sympatric Anguilla japonica and A. marmorata. J. Fish Biol. 2017; 91: 1517‒1525. doi: 10.1111/jfb.13483 28990671
22. Chow S, Suzuki S, Matsunaga T, Lavery S, Jeffs A, Takeyama H. Investigation on natural diets of larval marine animals using peptide nucleic acid (PNA)-directed PCR clamping. Mar. Biotech. 2011; 13: 305–313. https://doi.org/10.1007/s10126-010-9301-3
23. Dzhembekova N, Urushizaki S, Moncheva S, Ivanova P, Nagai S. Application of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black Sea. Harmful Algae 2017; 68: 40–51. doi: 10.1016/j.hal.2017.07.004 28962989
24. Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 2011; 6: e27310. doi: 10.1371/journal.pone.0027310 22194782
25. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011; 27: 2194–2200. doi: 10.1093/bioinformatics/btr381 21700674
26. Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T, Lee J, Chen F, Dangl JL, Tringe SG. Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 2015; 6: 771. doi: 10.3389/fmicb.2015.00771 26300854
27. Newman MW, Johnson CA. A disease of blue crab (Callinectes sapidus) caused by a parasitic dinoflagellate, Hematodinium sp. J. Parasitol. 1975; 63: 554–557.
28. Cardona L, de Quevedo IÁ, Borrell A, Aguilar A. Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS One 2012; 7: e31329. doi: 10.1371/journal.pone.0031329 22470416
29. D’Ambra I, Carmichael RH, Graham WM. Determination of δ13C and δ15N and trophic fractionation in jellyfish: implications for food web ecology. Mar. Biol. 2014; 161: 473–480. https://doi.org/10.1007/s00227-013-2345-y
30. D’Ambra I, Graham WM, Carmichael RH, Hernandez FJ Jr. Fish rely on scyphozoan host as a primary food source: evidence from stable isotope analysis. Mar. Biol. 2015; 162: 247–252. https://doi.org/10.1007/s00227-014-2569-5
31. Fleming NEC, Harrod C, Newton J, Houghton JDR. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology. PeerJ 2015; 3: e1110. doi: 10.7717/peerj.1110 26244116
32. Javidpour J, Cipriano-Maak AN, Mittermayr A, Dierking J. Temporal dietary shift in jellyfish revealed by stable isotope analysis. Mar. Biol. 2016; 163: 112–120. doi: 10.1007/s00227-016-2892-0 27194816
33. Ingram BA, Pitt KA, Barnes P. Stable isotopes reveal a potential kleptoparasitic relationship between an ophiuroid (Ophiocnemis marmorata) and the semaeostome jellyfish, Aurelia aurita. J. Plank. Res. 2017; 39: 138–146. https://doi.org/10.1093/plankt/fbw088
34. MacKenzie KM, Trueman CN, Lucas CH, Bortoluzzi J. The preparation of jellyfish for stable isotope analysis. Mar. Biol. 2017; 164: 219–227. https://doi.org/10.1007/s00227-017-3242-6
35. Tilves U, Sabatés A, Blázquez M, Raya V, Fuentes VL. Associations between fish and jellyfish in the NW Mediterranean. Mar. Biol. 2018; 165: 127–140. https://doi.org/10.1007/s00227-018-3381-4
36. Zeman SM, Corrales-Ugalde M, Brodeur RD, Sutherland KR. Trophic ecology of the neustonic cnidarian Velella velella in the northern California Current during an extensive bloom year: insights from gut contents and stable isotope analysis. Mar. Biol. 2018; 165: 150–162. https://doi.org/10.1007/s00227-018-3404-1
37. Suzuki N, Hoshino K, Murakami K, Takeyama H, Chow S. Molecular diet analysis of phyllosoma larvae of the Japanese spiny lobster Panulirus japonicus (Decapoda: Crustacea). Mar. Biotech. 2008; 10: 49–55. https://doi.org/10.1007/s10126-007-9038-9
38. O’Rorke R, Lavery S, Chow S, Takeyama H, Tsai P, Beckley LE, et al. Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS One 2012; 7: e42757. doi: 10.1371/journal.pone.0042757 22927937
39. Wangm M, Jeffs AG. Nutritional composition of potential zooplankton prey of spiny lobster larvae: a review. Rev. Aquacult. 2014; 6: 270–299. https://doi.org/10.1111/raq.12044
40. Mitchell JR. Food preferences, feeding mechanisms and related behavior in phyllosoma larvae of the California spiny lobster, Panulirus interruptus (Randall). M.Sc. Thesis, San Diego State College. 1971.
41. Saunders MI, Thompson PA, Jeffs AG, Säwstrőm C, Sachlikidid N, Beckley LE, Waite AM. Fussy feeders: phyllosoma larvae of the western rocklobster (Panulirus cygnus) demonstrate prey preference. PLoS One 2012; 7: e36580. doi: 10.1371/journal.pone.0036580 22586479
42. Wullur S, Yoshimatsu T, Tanaka H, Ohtani M, Sakakura Y, Kim H-J, Hagiwara A. Ingestion by Japanese eel Anguilla japonica larvae on various minute zooplanktons. Aquacult. Sci. 2013; 61: 341–347. https://doi.org/10.11233/aquaculturesci.61.341
43. Butts IAE, Sørensen SR, Politis SN, Tomkiewicz J. First-feeding by European eel larvae: A step forwards closing the life cycle in captivity. Aquaculture 2016; 464: 451–458. https://doi.org/10.1016/j.aquaculture.2016.07.028
44. Miller MJ. Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua-BioSci. Monog. 2009; 2: 1–94. https://doi.org/10.5047/absm.2009.00204.0001
45. Landry MR, Al-Mutairi H, Selph KE, Christensen S, Nunnery S. Seasonal patterns of mesozooplankton abundance and biomass at Station ALOHA. Deep-Sea Res. II 2001; 48: 2037–2061. https://doi.org/10.1016/S0967/S0967-0645(00)00172-7
46. Sun D, Wang C. Latitudinal distribution of zooplankton communities in the Western Pacific along 160E during summer 2014. J. Mar. Sys. 2017; 169: 52–60. https://doi.org/10.1016/j.jmarsys.2017.01.011
47. Sun D, Zhang D, Zhang R, Wang C. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux. Acta Oceanol. Sin. 2019; 38: 32–45. https://doi.org/10.1007/s13131-018-1237-x
48. Tanaka H, Kagawa H, Ohta H, Okuzawa K, Hirose K. The first report of eel larvae ingesting rotifers. Fish. Sci. 1995; 61: 171–172.
49. Chow S, Kurogi H, Watanabe S, Matsunari H, Sudo R, Nomura K, Tanaka H, Furuita H, Nishimoto A, Higuchi M, Jinbo T, Tomoda T. Onboard rearing attempts for the Japanese eel leptocephali using POM-enriched water collected in the Western North Pacific. Aquat. Liv. Resour. 2017; 30: 38. https://doi.org/10.1051/alr/2017037
50. Hagiwara A, Wullur S, Marcial HS, Hirai N, Sakakura Y. Euryhaline rotifer Proales similis as initial live food for rearing fish with small mouth. Aquaculture 2014; 432: 470474. https://doi.org/10.1016/j.aquaculture.2014.03.034
51. Tanaka H., Kagawa H, Ohta H. Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 2001; 201: 51–60. https://doi.org/10.1016/S0044-8486(01)00553-1
52. Tanaka H, Kagawa H, Ohta H, Unuma T, Nomura K. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol. Biochem. 2003; 28: 493–497.
53. Tomoda T, Kurohi H, Okauchi M, Kamoshida M, Imaizumi H, Jinbo T, et al. Hatchery-reared Japansese eel Anguilla japonica larvae ingest various organic matter formed as part of marine snow. Nippon Suisan Gakkaishi 2015; 81: 715–721. https://doi.org/10.2331/suisan.81.715
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF