#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Joint image compression and encryption based on sparse Bayesian learning and bit-level 3D Arnold cat maps


Autoři: Xinsheng Li aff001;  Taiyong Li aff002;  Jiang Wu aff002;  Zhilong Xie aff002;  Jiayi Shi aff002
Působiště autorů: College of Computer Science, Sichuan University, China aff001;  School of Economic Information Engineering, Southwestern University of Finance and Economics, China aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224382

Souhrn

Image compression and image encryption are two essential tasks in image processing. The former aims to reduce the cost for storage or transmission of images while the latter aims to change the positions or values of pixels to protect image content. Nowadays, an increasing number of researchers are focusing on the combination of these two tasks. In this paper, we propose a novel joint image compression and encryption approach that integrates a quantum chaotic system, sparse Bayesian learning (SBL) and a bit-level 3D Arnold cat map, so-called QSBLA, for such a purpose. Specifically, the QSBLA consists of 6 stages. First, a quantum chaotic system is employed to generate chaotic sequences for subsequent compression and encryption. Second, as one method of compressive sensing, SBL is used to compress images. Third, an operation of diffusion is performed on the compressed image. Fourth, the compressed and diffused image is transformed into several bit-level cubes. Fifth, 3D Arnold cat maps are used to permute each bit-level cube. Finally, all the bit-level cubes are integrated and transformed into a 2D pixel-level image, resulting in the compressed and encrypted image. Extensive experiments on 8 publicly-accessed images demonstrate that the proposed QSBLA is superior or comparable to some state-of-the-art approaches in terms of several measurement indices, indicating that the QSBLA is promising for joint image compression and encryption.

Klíčová slova:

Algorithms – Imaging techniques – Permutation – Image processing – Cryptography – Baboons – Compressed sensing – Chaotic systems


Zdroje

1. Villasenor J. Alternatives to the Discrete Cosine Transform for Irreversible Tomographic Image Compression. IEEE Transactions on Medical Imaging. 1993;12(4):803–811. doi: 10.1109/42.251132 18218476

2. Grgic S, Grgic M, Zovko-Cihlar B. Performance analysis of image compression using wavelets. IEEE Transactions on Industrial Electronics. 2001;48(3):682–695. doi: 10.1109/41.925596

3. Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine. 2001;18(5):36–58. doi: 10.1109/79.952804

4. Chen G, Mao Y, Chui CK. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons & Fractals. 2004;21(3):749–761. doi: 10.1016/j.chaos.2003.12.022

5. Abd El-Latif AA, Abd-El-Atty B, Talha M. Robust Encryption of Quantum Medical Images. IEEE Access. 2018;6:1073–1081. doi: 10.1109/ACCESS.2017.2777869

6. Chai X, Gan Z, Yuan K, Chen Y, Liu X. A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Computing & Applications. 2019;31(1):219–237. doi: 10.1007/s00521-017-2993-9

7. Li X, Xie Z, Wu J, Li T. Image Encryption Based on Dynamic Filtering and Bit Cuboid Operations. Complexity. 2019;2019:7485621.

8. Pak C, Huang L. A new color image encryption using combination of the 1D chaotic map. Signal Processing. 2017;138:129–137. doi: 10.1016/j.sigpro.2017.03.011

9. Zhu C, Wang G, Sun K. Improved cryptanalysis and enhancements of an image encryption scheme using combined 1D chaotic maps. Entropy. 2018;20(11):843. doi: 10.3390/e20110843

10. Zhu S, Zhu C. Image encryption algorithm with an avalanche effect based on a six-dimensional discrete chaotic system. Multimedia Tools and Applications. 2018;77(21):29119–29142. doi: 10.1007/s11042-018-6078-2

11. Wu X, Li Y, Kurths J. A new color image encryption scheme using CML and a fractional-order chaotic system. PloS one. 2015;10(3):e0119660. doi: 10.1371/journal.pone.0119660 25826602

12. Li T, Yang M, Wu J, Jing X. A Novel Image Encryption Algorithm Based on a Fractional-Order Hyperchaotic System and DNA Computing. Complexity. 2017;2017:9010251. doi: 10.1155/2017/9010251

13. Akhshani A, Akhavan A, Lim SC, Hassan Z. An image encryption scheme based on quantum logistic map. Communications in Nonlinear Science and Numerical Simulation. 2012;17(12):4653–4661. doi: 10.1016/j.cnsns.2012.05.033

14. Seyedzadeh SM, Norouzi B, Mosavi MR, Mirzakuchaki S. A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dynamics. 2015;81(1-2):511–529. doi: 10.1007/s11071-015-2008-2

15. Li T, Shi J, Wu J, Li X, Pan F. Image Encryption Based on Pixel-level Diffusion with Dynamic Filtering and DNA-level Permutation with 3D Latin Cubes. Entropy. 2019;21(3):319. doi: 10.3390/e21030319

16. Çavuşoğlu Ü, Kaçar S, Pehlivan I, Zengin A. Secure image encryption algorithm design using a novel chaos based S-Box. Chaos, Solitons & Fractals. 2017;95:92–101. doi: 10.1016/j.chaos.2016.12.018

17. Zhu C, Wang G, Sun K. Cryptanalysis and improvement on an image encryption algorithm design using a novel chaos based S-box. Symmetry. 2018;10(9):399. doi: 10.3390/sym10090399

18. Li X, Knipe J, Cheng H. Image compression and encryption using tree structures. Pattern Recognition Letters. 1997;18(11-13):1253–1259. doi: 10.1016/S0167-8655(97)00099-8

19. Ou SC, Chung HY, Sung WT. Improving the compression and encryption of images using FPGA-based cryptosystems. Multimedia Tools and Applications. 2006;28(1):5–22. doi: 10.1007/s11042-006-5117-6

20. Yuen CH, Wong KW. A chaos-based joint image compression and encryption scheme using DCT and SHA-1. Applied Soft Computing. 2011;11(8):5092–5098. doi: 10.1016/j.asoc.2011.05.050

21. Tong X, Wang Z, Zhang M, Liu Y. A new algorithm of the combination of image compression and encryption technology based on cross chaotic map. Nonlinear Dynamics. 2013;72(1-2):229–241. doi: 10.1007/s11071-012-0707-5

22. Li P, Lo KT. Joint image compression and encryption based on order-8 alternating transforms. Journal of Visual Communication and Image Representation. 2017;44:61–71. doi: 10.1016/j.jvcir.2017.01.021

23. Zhang X, Wang X. Multiple-image encryption algorithm based on mixed image element and permutation. Optics and Lasers in Engineering. 2017;92:6–16. doi: 10.1016/j.optlaseng.2016.12.005

24. Landir M, Hamiche H, Kassim S, Tahanout M, Kemih K, Addouche SA. A novel robust compression-encryption of images based on SPIHT coding and fractional-order discrete-time chaotic system. Optics and Laser Technology. 2019;109:534–546. doi: 10.1016/j.optlastec.2018.08.040

25. Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory. 2006;52(2):489–509. doi: 10.1109/TIT.2005.862083

26. Donoho DL, et al. Compressed sensing. IEEE Transactions on information theory. 2006;52(4):1289–1306. doi: 10.1109/TIT.2006.871582

27. Candes EJ, Tao T. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? IEEE Transactions on Information Theory. 2006;52(12):5406–5425. doi: 10.1109/TIT.2006.885507

28. Zhou N, Zhang A, Wu J, Pei D, Yang Y. Novel hybrid image compression-encryption algorithm based on compressive sensing. OPTIK. 2014;125(18):5075–5080. doi: 10.1016/j.ijleo.2014.06.054

29. Zhou N, Zhang A, Zheng F, Gong L. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Optics and Laser Technology. 2014;62:152–160. doi: 10.1016/j.optlastec.2014.02.015

30. Liu X, Mei W, Du H. Simultaneous image compression, fusion and encryption algorithm based on compressive sensing and chaos. Optics Communications. 2016;366:22–32. doi: 10.1016/j.optcom.2015.12.024

31. Zhang K, Fang Jb. Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network. Mathematical Problems in Engineering. 2015; 2015:501054.

32. Chai X, Zheng X, Gan Z, Han D, Chen Y. An image encryption algorithm based on chaotic system and compressive sensing. Signal Processing. 2018;148:124–144. doi: 10.1016/j.sigpro.2018.02.007

33. Chai X, Gan Z, Chen Y, Zhang Y. A visually secure image encryption scheme based on compressive sensing. Signal Processing. 2017;134:35–51. doi: 10.1016/j.sigpro.2016.11.016

34. Zhang T, Li S, Ge R, Yuan M, Ma Y. A Novel 1D Hybrid Chaotic Map-Based Image Compression and Encryption Using Compressed Sensing and Fibonacci-Lucas Transform. Mathematical Problems in Engineering. 2016;2016:7683687.

35. Wang Q, Chen X, Wei M, Miao Z. Simultaneous encryption and compression of medical images based on optimized tensor compressed sensing with 3D Lorenz. Biomedical Engineering Online. 2016;15:118. doi: 10.1186/s12938-016-0239-1 27814721

36. Deng J, Zhao S, Wang Y, Wang L, Wang H, Sha H. Image compression-encryption scheme combining 2D compressive sensing with discrete fractional random transform. Multimedia Tools and Applications. 2017;76(7):10097–10117. doi: 10.1007/s11042-016-3600-2

37. Hu G, Xiao D, Wang Y, Xiang T. An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications. Journal of Visual Communication and Image Representation. 2017;44:116–127. doi: 10.1016/j.jvcir.2017.01.022

38. Zhang Y, Xu B, Zhou N. A novel image compression-encryption hybrid algorithm based on the analysis sparse representation. Optics Communications. 2017;392:223–233. doi: 10.1016/j.optcom.2017.01.061

39. Chen J, Zhang Y, Qi L, Fu C, Xu L. Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression. Optics and Laser Technology. 2018;99:238–248. doi: 10.1016/j.optlastec.2017.09.008

40. Zhu S, Zhu C, Wang W. A Novel Image Compression-Encryption Scheme Based on Chaos and Compression Sensing. IEEE Access. 2018;6:67095–67107. doi: 10.1109/ACCESS.2018.2874336

41. Zhang Z, Jung TP, Makeig S, Rao BD. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning. IEEE Transactions on Biomedical Engineering. 2013;60(2):300–309. doi: 10.1109/TBME.2012.2226175 23144028

42. Sun B, Zhang Z. Photoplethysmography-Based Heart Rate Monitoring Using Asymmetric Least Squares Spectrum Subtraction and Bayesian Decision Theory. IEEE Sensors Journal. 2015;15(12):7161–7168. doi: 10.1109/JSEN.2015.2473697

43. Zhang Z, Jung TP, Makeig S, Pi Z, Rao BD. Spatiotemporal Sparse Bayesian Learning With Applications to Compressed Sensing of Multichannel Physiological Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2014;22(6):1186–1197. doi: 10.1109/TNSRE.2014.2319334 24801887

44. Li T, Zhang Z. Robust Face Recognition via Block Sparse Bayesian Learning. Mathematical Problems in Engineering. 2013;2013:695976.

45. Williams O, Blake A, Cipolla R. Sparse Bayesian learning for efficient visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005;27(8):1292–1304. doi: 10.1109/TPAMI.2005.167 16119267

46. Yang M, Fan S, Lee WJ. Probabilistic Short-Term Wind Power Forecast Using Componential Sparse Bayesian Learning. IEEE Transactions on Industry Applications. 2013;49(6):2783–2792. doi: 10.1109/TIA.2013.2265292

47. Li T, Zhou M, Guo C, Luo M, Wu J, Pan F, et al. Forecasting Crude Oil Price Using EEMD and RVM with Adaptive PSO-Based Kernels. Energies. 2016;9(12):1014. doi: 10.3390/en9121014

48. Li T, Hu Z, Jia Y, Wu J, Zhou Y. Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning. Energies. 2018;11(7):1882. doi: 10.3390/en11071882

49. Zhou Y, Li T, Shi J, Qian Z. A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices. Complexity. 2019;2019:4392785. doi: 10.1155/2019/4392785

50. Wu J, Chen Y, Zhou T, Li T. An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting. Energies. 2019;12(7):1239. doi: 10.3390/en12071239

51. Tipping ME. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research. 2001;1(3):211–244.

52. Wipf DP, Rao BD. Sparse Bayesian learning for basis selection. IEEE Transactions on Signal processing. 2004;52(8):2153–2164. doi: 10.1109/TSP.2004.831016

53. Zhang Z, Rao BD. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE Journal of Selected Topics in Signal Processing. 2011;5(5):912–926. doi: 10.1109/JSTSP.2011.2159773

54. Zhu C, Hu Y, Sun K. New image encryption algorithm based on hyperchaotic system and ciphertext diffusion in crisscross pattern. Journal of Electronics and Information Technology. 2012;34(7):1735–1743. doi: 10.3724/SP.J.1146.2011.01004

55. Zhu C, Kehui S. Cryptanalysis and improvement of a class of hyperchaos based image encryption algorithms. Acta Physica Sinica. 2012;61(12):120503.

56. Liu L, Zhang Q, Wei X, Zhou C. Image Encryption Algorithm Based on Chaotic Modulation of Arnold Dual Scrambling and DNA Computing. Advanced Science Letters. 2011;4(11-12):3537–3542. doi: 10.1166/asl.2011.1910

57. Hu Y, Xie X, Liu X, Zhou N. Quantum Multi-Image Encryption Based on Iteration Arnold Transform with Parameters and Image Correlation Decomposition. International Journal of Theoretical Physics. 2017;56(7):2192–2205. doi: 10.1007/s10773-017-3365-z

58. Kumar S, Sharma RK. Securing color images using Two-square cipher associated with Arnold map. Multimedia Tools and Applications. 2017;76(6):8757–8779. doi: 10.1007/s11042-016-3504-1

59. Zhou N, Hu Y, Gong L, Li G. Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Information Processing. 2017;16(6):164. doi: 10.1007/s11128-017-1612-0

60. Chai X, Fu X, Gan Z, Zhang Y, Lu Y, Chen Y. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Processing. 2019;155:44–62. doi: 10.1016/j.sigpro.2018.09.029

61. Arnol’d VI, Avez A. Problèmes ergodiques de la mécanique classique. 1967;.

62. Guan ZH, Huang F, Guan W. Chaos-based image encryption algorithm. Physics Letters A. 2005;346(1):153–157. doi: 10.1016/j.physleta.2005.08.006

63. Zhan K, Wei D, Shi J, Yu J. Cross-utilizing hyperchaotic and DNA sequences for image encryption. Journal of Electronic Imaging. 2017;26(1):013021. doi: 10.1117/1.JEI.26.1.013021

64. Hua Z, Zhou Y. Design of image cipher using block-based scrambling and image filtering. Information Sciences. 2017;396:97–113. doi: 10.1016/j.ins.2017.02.036

65. Gu S, Zhang L, Zuo W, Feng X. Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014. p. 2862–2869.

66. Cai S, Liu K, Yang M, Tang J, Xiong X, Xiao M. A new development of non-local image denoising using fixed-point iteration for non-convex ℓp sparse optimization. PloS one. 2018;13(12):e0208503. doi: 10.1371/journal.pone.0208503 30540797

67. Chen J, Zhu Z, Fu C, Yu H, Zhang Y. Reusing the permutation matrix dynamically for efficient image cryptographic algorithm. Signal Processing. 2015;111:294–307. doi: 10.1016/j.sigpro.2015.01.003

68. Schneier B. Applied cryptography: protocols, algorithms, and source code in C. John Wiley & Sons; 2007.

69. Stinson DR. Cryptography: theory and practice. CRC press; 2005.

70. Chai X, Zheng X, Gan Z, Zhang Y, Chen Y. Exploiting plaintext-related mechanism for secure color image encryption. Neural Computing and Applications. 2019;2019:1–24.

71. Chai X, Fu X, Gan Z, Zhang Y, Lu Y, Chen Y. An efficient chaos-based image compression and encryption scheme using block compressive sensing and elementary cellular automata. Neural Computing and Applications. 2018;2018:1–28.

72. Wang Z, Huang X, Li Y, Song X. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chinese Physics B. 2013;22(1):010504. doi: 10.1088/1674-1056/22/1/010504

73. Wu Y, Noonan JP, Agaian S. NPCR and UACI randomness tests for image encryption. Cyber journals: multidisciplinary journals in science and technology, Journal of Selected Areas in Telecommunications (JSAT). 2011;1(2):31–38.


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#