#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

AtUBL5 regulates growth and development through pre-mRNA splicing in Arabidopsis thaliana


Autoři: Etsuko Watanabe aff001;  Shoji Mano aff001;  Mikio Nishimura aff001;  Kenji Yamada aff001
Působiště autorů: Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan aff001;  Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan aff002;  Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan aff003;  Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224795

Souhrn

Ubiquitin-like proteins play important roles in the regulation of many biological processes. UBL5 (Ubiquitin-like protein 5)/Hub1 (Homologous to ubiquitin 1), a member of the ubiquitin family, acts as a ubiquitin-like modifier on a specific target, the spliceosomal protein Snu66, in yeast and human cells. The 22nd aspartic acid (Asp22) is involved in the attachment of Hub1 to the Hub1 interaction domain (HIND) of Snu66 in yeast to modulate spliceosomal activity. Hub1 differs from other modifiers which interact covalently with their targets. It modulates pre-mRNA splicing by binding to Snu66 non-covalently in both yeast and human cells. However, the molecular mechanisms of Hub1-mediated pre-mRNA splicing in plant systems remains unclear. To better understand the function of Hub1 in plants, we examined the role of this ubiquitin-like modifier in Arabidopsis thaliana, which has two Hub1 homologues. Arabidopsis UBL5/Hub1(UBL5) is highly conserved at the amino acid level, compared to eukaryotic homologues in both plants and animals. In this study, phenotypic analysis of A. thaliana with reduced UBL5 gene expression, generated by RNA interference of AtUBL5a and AtUBL5b were performed. Interestingly, knock down plants of AtUBL5 showed abnormalities in root elongation, plant development, and auxin response. AtUBL5b is highly expressed in the vascular tissue of the leaf, stem, and root tissue. Yeast two-hybrid analysis revealed that AtUBL5a and AtUBL5b interact with the putative splicing factor AtPRP38 through its C-terminal domain (AtPRP38C). Knock down of AtUBL5b resulted in a pattern of insufficient pre-mRNA splicing in several introns of AtCDC2, and in introns of IAA1, IAA4, and IAA5. Defects of pre-mRNA splicing in an AtPRP38 mutant resulted in an insufficient pre-mRNA splicing pattern in the intron of IAA1. Based on these results, we showed that AtUBL5b positively regulates plant root elongation and development through pre-mRNA splicing with AtPRP38C in A. thaliana.

Klíčová slova:

Yeast – Saccharomyces cerevisiae – Schizosaccharomyces pombe – Sequence databases – Introns – Arabidopsis thaliana – Auxins – RNA splicing


Zdroje

1. Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature. 2009;458(7237):422–429. doi: 10.1038/nature07958 19325621

2. Ammon T, Mishra SK, Kowalska K, Popowicz GM, Holak TA, Jentsch S. The conserved ubiquitin-like protein Hub 1 plays a critical role in splicing in human cells. Mol Cell Biol. 2014;6(4):312–323. doi: 10.1093/jmcb/mju026 24872507

3. Karaduman R, Chanarat S, Pfander B, Jentsch S. Error-prone splicing controlled by the ubiquitin relative Hub 1. Mol Cell. 2017;67(3):423–432.e4. doi: 10.1016/j.molcel.2017.06.021 28712727

4. Lüders J, Pyrowolakis G, Jentsch S. The ubiquitin-like protein HUB1 forms SDS-resistant complexes with cellular proteins in the absence of ATP. EMBO Rep. 2003;4(12):1169–1174. doi: 10.1038/sj.embor.7400025 14608371

5. Mishra SK, Ammon T, Popowicz GM, Krajewski M, Nagel RJ, Ares M Jr, et al. Role of the ubiquitin-like protein Hub 1 in splice-site usage and alternative splicing. Nature. 2011;474(7350):173–178. doi: 10.1038/nature10143 21614000

6. Wilkinson CR, Dittmar GA, Ohi MD, Uetz P, Jones N, Finley D. Ubiquitin-like protein Hub 1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. Curr Biol. 2004;14(24):2283–2288. doi: 10.1016/j.cub.2004.11.058 15620657

7. Yashiroda H, Tanaka K. Hub 1 is an essential ubiquitin-like protein without functioning as a typical modifier in fission yeast. Genes Cells. 2004;9(12):1189–1197. doi: 10.1111/j.1365-2443.2004.00807.x 15569151

8. Svéda M, Castorálová M, Lipov J, Ruml T, Knejzlík Z. Human UBL5 protein interacts with coilin and meets the Cajal bodies. Biochem Biophy Res Commun. 2013;436(2):240–245. doi: 10.1016/j.bbrc.2013.05.083 23726919

9. Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics. 2006;174(1):229–239. doi: 10.1534/genetics.106.061580 16816413

10. Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell. 2007;13(4):467–480. doi: 10.1016/j.devcel.2007.07.016 17925224

11. Friedman JS, Koop BF, Raymond V, Walter MA. Isolation of a ubiquitin-like (UBL5) gene from a screen identifying highly expressed and conserved iris genes. Genomics. 2001;71(2):252–255. doi: 10.1006/geno.2000.6439 11161819

12. Ramelot TA, Cort JR, Yee AA, Semesi A, Edwards AM, Arrowsmith CH, Kennedy MA. Solution structure of the yeast ubiquitin-like modifier protein Hub 1. J Struct Funct Genomics. 2003;4(1):25–30. doi: 10.1023/a:1024674220425 12943364

13. McNally T, Huang Q, Janis RS, Liu Z, Olejniczak ET, Reilly RM. Structural analysis of UBL5, a novel ubiquitin-like modifier. Protein Sci. 2003;12(7):1562–1566. doi: 10.1110/ps.0382803 12824502

14. Patel M, Milla-Lewis S, Zhang W, Templeton K, Reynolds WC, Richardson K, et al. Overexpression of ubiquitin-like LpHUB1 gene confers drought tolerance in perennial ryegrass. Plant Biotech. 2015;13(5):689–699. doi: 10.1111/pbi.12291 25487628

15. Mockaitis K, Howell SH. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 2000;24(6):785–796. doi: 10.1046/j.1365-313x.2000.00921.x 11135112

16. Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435(7041):441–445. doi: 10.1038/nature03543 15917797

17. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell. 2005;9(1):109–119. doi: 10.1016/j.devcel.2005.05.014 15992545

18. Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016;26(4):399–422. Epub 2016/03/26 doi: 10.1038/cr.2016.39 27012465

19. Weigel D, Glazebrook J. Transformation of agrobacterium using electroporation. CSH Protocols. 2006;2006(7). Epub 2006/01/01 doi: 10.1101/pdb.prot4665 22484681

20. Bechtold N, Pelletier G. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol. 1998;82:259–266. doi: 10.1385/0-89603-391-0:259 9664431

21. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301(5633):653–657. doi: 10.1126/science.1086391 12893945

22. Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng. 2007;104(1):34–41. Epub 2007/08/19 doi: 10.1263/jbb.104.34 17697981

23. Mano S, Nakamori C, Nito K, Kondo M, Nishimura M. The Arabidopsis pex12 and pex13 mutants are defective in both PTS1- and PTS2-dependent protein transport to peroxisomes. Plant J. 2006;47(4):604–618. Epub 2006/07/04 doi: 10.1111/j.1365-313X.2006.02809.x 16813573

24. Hino T, Tanaka Y, Kawamukai M, Nishimura K, Mano S, Nakagawa T. Two Sec13p homologs, AtSec13A and AtSec13B, redundantly contribute to the formation of COPII transport vesicles in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2011;75(9):1848–1852. doi: 10.1271/bbb.110331 21897010

25. Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell. 2011;41(6):649–660. doi: 10.1016/j.molcel.2011.02.029 21419340

26. Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem. 2007;282(52):37794–37804. doi: 10.1074/jbc.M707168200 17965410


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#