Micro-dislodgement during transcatheter aortic valve implantation with a contemporary self-expandable prosthesis
Autoři:
Katharina Hellhammer aff001; Kerstin Piayda aff001; Shazia Afzal aff001; Verena Veulemans aff001; Inga Hennig aff001; Matthias Makosch aff001; Amin Polzin aff001; Malte Kelm aff001; Tobias Zeus aff001
Působiště autorů:
University Hospital Düsseldorf, Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Düsseldorf, Germany
aff001; CARID (Cardiovascular Research Institute Düsseldorf), Düsseldorf, Germany
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224815
Souhrn
Objectives
To evaluate the incidence, risk factors and the clinical outcome of micro-dislodgement (MD) with a contemporary self-expandable prosthesis during transcatheter aortic valve implantation.
Methods
MD was defined as movement of the prosthesis of at least 1.5 mm upwards or downwards from its position directly before release compared to its final position. Patients were grouped according to the occurrence (+MD) or absence (-MD) of MD. Baseline characteristics, imaging data and outcome parameters were retrospectively analyzed.
Results
We identified 258 eligible patients. MD occurred in 31.8% (n = 82) of cases with a mean magnitude of 2.8 mm ± 2.2 in relation to the left coronary cusp and 3.0 mm ± 2.1 to the non-coronary cusp. Clinical and hemodynamic outcomes were similar in both groups with consistency over a follow-up period of three months. A larger aortic valve area (AVA) (-MD vs. +MD: 0.6 cm2 ± 0.3 vs. 0.7cm2 ± 0.2; p = 0.014), was the only independent risk factor for the occurrence of MD in a multivariate regression analysis (OR 5.3; 95% CI: 1.1–24.9; p = 0.036).
Conclusions
MD occurred in nearly one third of patients and did not affect clinical and hemodynamic outcome. A larger AVA seems to be a potential risk factor for MD.
Klíčová slova:
Medical implants – Medical risk factors – Aorta – Regression analysis – Hemodynamics – Prosthetics – Calcification – Aortic valve
Zdroje
1. Popma JJ, Adams DH, Reardon MJ, Yakubov SJ, Kleimann NS, Heimansohn D, et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J Am Coll Cardiol. 2014;(63): 1972–1981.
2. Reardon MJ, Kleiman NS, Adams DH, Yakubov SJ, Coselli JS, Deeb GM, et al. Outcomes in the Randomized CoreValve US Pivotal High Risk Trial in Patients With a Society of Thoracic Surgeons Risk Score of 7% or Less. JAMA Cardiol. 2016;(1): 945–949.
3. Baumgartner H, Falk V, Bax JJ, de Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;(38): 2739–2791.
4. Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H, O`Hair D, et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N Engl J Med. 2019;(380): 1706–1715.
5. Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N Engl J Med. 2019;(380): 1695–1705.
6. Cribier A. The development of transcatheter aortic valve replacement (TAVR). Glob Cardiol Sci Pract. 2016;(2016): e201632.
7. Bekeredjian R, Szabo G, Balaban Ü, Bleiziffer S, Bauer T, Ensminger S, et al. Patients at low surgical risk as defined by the Society of Thoracic Surgeons Score undergoing isolated interventional or surgical aortic valve implantation: in-hospital data and 1-year results from the German Aortic Valve Registry (GARY). Eur Heart J. 2019;(40): 1323–1330.
8. Finkelstein A, Rozenbaum Z, Zhitomirsky S, Halkin A, Banai S, Bazan S, et al. Safety outcomes of new versus old generation transcatheter aortic valves. Catheter Cardiovasc Interv. 2019;(94): E44–E53.
9. Osman M, Ghaffar YA, Saleem M, Kheiri B, Osman K, Munir MB, et al. Meta-Analysis Comparing Transcatheter Aortic Valve Implantation With Balloon Versus Self-Expandable Valves. Am J Cardiol. 2019;().
10. Agarwal S, Parashar A, Kumbhani DJ, Svensson LG, Krishnaswamy A, Tuzcu E, et al. Comparative meta-analysis of balloon-expandable and self-expandable valves for transcatheter aortic valve replacement. Int J Cardiol. 2015;(197): 87–97.
11. Aksoy O, Paixao AR, Marmagkiolis K, Mego D, Rollefson WA, Cilingiroglu M. Aortic annular rupture during TAVR: Mini review. Cardiovasc Revasc Med. 2016;(2016): 199–201.
12. Petronio AS, Sinning J-M, van Mieghem N, Zucchelli G, Nickenig G, Bekerdjian R, et al. Optimal Implantation Depth and Adherence to Guidelines on Permanent Pacing to Improve the Results of Transcatheter Aortic Valve Replacement With the Medtronic CoreValve System: The CoreValve Prospective, International, Post-Market ADVANCE-II Study. JACC Cardiovasc Interv. 2015;(8): 837–846.
13. Ussia GP, Barbanti M, Sarkar K, Aruta P, Scarabelli M, Cammalleri V, et al. Transcatheter aortic bioprosthesis dislocation: technical aspects and midterm follow-up. EuroIntervention. 2012;(7): 1285–1292.
14. Mylotte D, Andalib A, Thériault-Lauzier P, Dorfmeister M, Girgis M, Alharbi W, et al. Transcatheter heart valve failure: a systematic review. Eur Heart J. 2015;(36): 1306–1327.
15. Makkar RR, Jilaihawi H, Chakravarty T, Fontana GP, Kapadia S, Babaliaros V, et al. Determinants and outcomes of acute transcatheter valve-in-valve therapy or embolization: a study of multiple valve implants in the U.S. PARTNER trial (Placement of AoRTic TraNscathetER Valve Trial Edwards SAPIEN Transcatheter Heart Valve). J Am Coll Cardiol. 2013;(62): 418–430.
16. Vasa-Nicotera M, Sinning J-M, Chin D, Lim TK, Spyt T, Jilaihawi H, et al. Impact of paravalvular leakage on outcome in patients after transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2012;(5): 858–865.
17. John D, Buellesfeld L, Yuecel S, Mueller R, Latsios G, Beucher H, et al. Correlation of Device landing zone calcification and acute procedural success in patients undergoing transcatheter aortic valve implantations with the self-expanding CoreValve prosthesis. JACC Cardiovasc Interv. 2010;(3): 233–243.
18. Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min J, Leipsic JA. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr. 2012;(6): 366–380. doi: 10.1016/j.jcct.2012.11.002 23217460
19. Kappetein AP, Head SJ, Genereux P, Piazza N, van Mieghem NM, Blackstone E, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. J Am Coll Cardiol. 2012;(60): 1438–1454.
20. Manoharan G, Van Mieghem NM, Windecker S, Bosmans J, Bleiziffer S, Modine T, et al. 1-Year Outcomes With the Evolut R Self-Expanding Transcatheter Aortic Valve: From the International FORWARD Study. JACC Cardiovasc Interv. 2018;(11): 2326–2334.
21. van Rosendael PJ, Delgado V, Bax JJ. Pacemaker implantation rate after transcatheter aortic valve implantation with early and new-generation devices: a systematic review. Eur Heart J. 2018;(39): 2003–2013.
22. Hell MM, Biburger L, Marwan M, Schuhbaeck A, Achenbach S, Lell M, et al. Prediction of fluoroscopic angulations for transcatheter aortic valve implantation by CT angiography: influence on procedural parameters. Eur Heart J Cardiovasc Imaging. 2017;(18): 906–914.
23. Geisbusch S, Bleiziffer S, Mazzitelli D, Ruge H, Bauernschmitt R, Lange R. Incidence and management of CoreValve dislocation during transcatheter aortic valve implantation. Circ Cardiovasc Interv. 2010;(3): 531–536.
24. Hildick-Smith D, Redwood S, Mullen M, Thomas M, Kovac J, Brecker S, et al. Complications of transcatheter aortic valve implantation: avoidance and management. EuroIntervention. 2011;(7): 621–628.
25. Forrest JK. Transcatheter aortic valve replacement: design, clinical application, and future challenges. Yale J Biol Med. 2012;(85): 239–247.
26. Hachinohe D, Latib A, Laricchia A, Demir OM, Agricola E, Romano V, et al. Anatomic and procedural associations of transcatheter heart valve displacement following Evolut R implantation. Catheter Cardiovasc Interv. 2018;().
27. Kaier K, Reinecke H, Schmoor C, Frankenstein L, Vach W, Hehn P, et al. Learning Curves Among All Patients Undergoing Transcatheter Aortic Valve Implantation in Germany: A Retrospective Observational Study. Int J Cardiol. 2017;(235): 17–21.
28. Deharo P, Jaussaud N, Grisoli D, Camus O, Ressequier N, Le Breton H, et al. Impact of Direct Transcatheter Aortic Valve Replacement Without Balloon Aortic Valvuloplasty on Procedural and Clinical Outcomes: Insights From the FRANCE TAVI Registry. JACC Cardiovasc Interv. 2018;(11): 1956–1965.
29. Vavuranakis M, Lavda M, Vrachatis D, Papaioannou TG, Kalogeras K, Kolokathis AM, et al. Impact of balloon aortic valvuloplasty on transcatheter aortic valve implantation with self-expandable valve. J Cardiol. 2017;(69): 245–252.
30. Martin GP, Sperrin M, Bagur R, de Belder MA, Buchan I, Gunning M, et al. Pre-Implantation Balloon Aortic Valvuloplasty and Clinical Outcomes Following Transcatheter Aortic Valve Implantation: A Propensity Score Analysis of the UK Registry. J Am Heart Assoc. 2017;(6).
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF