#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Deep brain stimulation restores the glutamatergic and GABAergic synaptic transmission and plasticity to normal levels in kindled rats


Autoři: Samireh Ghafouri aff001;  Yaghoub Fathollahi aff001;  Saeed Semnanian aff001;  Amir Shojaei aff001;  Azam Asgari aff001;  Azin Ebrahim Amini aff003;  Javad Mirnajafi-Zadeh aff001
Působiště autorů: Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran aff001;  Département de Neurosciences, Université de Montréal, Montréal, Canada aff002;  Department of Biomaterial and Biomedical Engineering (IBBME), Faculty of applied sciences, University of Toronto, Toronto, Canada aff003;  Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224834

Souhrn

Background

The precise effect of low frequency stimulation (LFS) as a newly postulated, anticonvulsant therapeutic approach on seizure-induced changes in synaptic transmission has not been completely determined.

Hypothesis

In this study, the LFS effect on impaired, synaptic plasticity in kindled rats was investigated.

Methods

Hippocampal kindled rats received LFS (4 trials consisting of one train of 200 monophasic square waves, 0.1 ms pulse duration, 1 Hz) on four occasions. LTP induction was evaluated using whole-cell recordings of evoked excitatory and inhibitory post-synaptic potentials (EPSPs and IPSPs respectively) in CA1 neurons in hippocampal slices. In addition, the hippocampal excitatory and inhibitory post-synaptic currents (EPSCs and IPSCs), and the gene expression of NR2A, GluR2 and γ2 were evaluated.

Results

LTP induction was attenuated in excitatory and inhibitory synapses in hippocampal slices of kindled rats. When LFS was applied in kindled animals, LTP was induced in EPSPs and IPSPs. Moreover, LFS increased and decreased the threshold intensities of EPSCs and IPSCs respectively. In kindled animals, NR2A gene expression increased, while γ2 gene expression decreased. GluR2 gene expression did not significantly change. Applying LFS in kindled animals mitigated these changes: No significant differences were observed in NR2A, γ2 and GluR2 gene expression in the kindled+LFS and control groups.

Conclusion

The application of LFS in kindled animals restored LTP induction in both EPSPs and IPSPs, and returned the threshold intensity for induction of EPSCs, IPSCs and gene expression to similar levels as controls.

Klíčová slova:

Gene expression – Neurons – Functional electrical stimulation – Synapses – Gamma-aminobutyric acid – Synaptic plasticity – Neurotransmission – Anticonvulsants


Zdroje

1. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–9. doi: 10.1038/361031a0 8421494

2. Castillo PE, Chiu CQ, Carroll RC. Long-term plasticity at inhibitory synapses. Current opinion in neurobiology. 2011;21(2):328–38. doi: 10.1016/j.conb.2011.01.006 21334194

3. Gaiarsa JL, Caillard O, Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 2002;25(11):564–70. doi: 10.1016/s0166-2236(02)02269-5 12392931

4. Woodin MA, Maffei A. Inhibitory synaptic plasticity: Springer Science & Business Media; 2010.

5. Hermann BP, Seidenberg M, Schoenfeld J, Davies K. Neuropsychological characteristics of the syndrome of mesial temporal lobe epilepsy. Arch Neurol. 1997;54(4):369–76. doi: 10.1001/archneur.1997.00550160019010 9109737

6. Engel J Jr. Mesial temporal lobe epilepsy: what have we learned? Neuroscientist. 2001;7(4):340–52. doi: 10.1177/107385840100700410 11488399

7. Loscher W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem Res. 2017;42(7):1873–88. doi: 10.1007/s11064-017-2222-z 28290134

8. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969;25(3):295–330. doi: 10.1016/0014-4886(69)90128-9 4981856

9. Cain DP. Long-term potentiation and kindling: how similar are the mechanisms? Trends Neurosci. 1989;12(1):6–10. doi: 10.1016/0166-2236(89)90146-x 2471338

10. Cain DP, Boon F, Hargreaves EL. Evidence for different neurochemical contributions to long-term potentiation and to kindling and kindling-induced potentiation: role of NMDA and urethane-sensitive mechanisms. Exp Neurol. 1992;116(3):330–8. doi: 10.1016/0014-4886(92)90011-e 1350255

11. Jahanshahi A, Mirnajafi-Zadeh J, Javan M, Mohammad-Zadeh M, Rohani R. The antiepileptogenic effect of electrical stimulation at different low frequencies is accompanied with change in adenosine receptors gene expression in rats. Epilepsia. 2009;50(7):1768–79. doi: 10.1111/j.1528-1167.2009.02088.x 19453712

12. Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M, Ghorbani P, Sadegh M, Noorbakhsh SM. Effect of low frequency stimulation of perforant path on kindling rate and synaptic transmission in the dentate gyrus during kindling acquisition in rats. Epilepsy Res. 2007;75(2–3):154–61. doi: 10.1016/j.eplepsyres.2007.05.003 17576049

13. Schubert M, Siegmund H, Pape HC, Albrecht D. Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learn Mem. 2005;12(5):520–6. doi: 10.1101/lm.4205 16204204

14. Gaito J. The effect of low frequency and direct current stimulation on the kindling phenomenon in rats. Can J Neurol Sci. 1981;8(3):249–53. doi: 10.1017/s0317167100043286 7284903

15. Yamamoto J, Ikeda A, Satow T, Takeshita K, Takayama M, Matsuhashi M, Matsumoto R, Ohara S, Mikuni N, Takahashi J, Miyamoto S, Taki W, Hashimoto N, Rothwell JC, Shibasaki H. Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy. Epilepsia. 2002;43(5):491–5. doi: 10.1046/j.1528-1157.2002.29001.x 12027909

16. Kile KB, Tian N, Durand DM. Low frequency stimulation decreases seizure activity in a mutation model of epilepsy. Epilepsia. 2010;51(9):1745–53. doi: 10.1111/j.1528-1167.2010.02679.x 20659150

17. Halpern C, Hurtig H, Jaggi J, Grossman M, Won M, Baltuch G. Deep brain stimulation in neurologic disorders. Parkinsonism Relat Disord. 2007;13(1):1–16. doi: 10.1016/j.parkreldis.2006.03.001 17141550

18. Weiss SR, Li XL, Rosen JB, Li H, Heynen T, Post RM. Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport. 1995;6(16):2171–6. 8595196

19. Ghafouri S, Fathollahi Y, Javan M, Shojaei A, Asgari A, Mirnajafi-Zadeh J. Effect of low frequency stimulation on impaired spontaneous alternation behavior of kindled rats in Y-maze test. Epilepsy Res. 2016;126:37–44. doi: 10.1016/j.eplepsyres.2016.06.010 27423017

20. Klausnitzer J, Kulla A, Manahan-Vaughan D. Role of the group III metabotropic glutamate receptor in LTP, depotentiation and LTD in dentate gyrus of freely moving rats. Neuropharmacology. 2004;46(2):160–70. doi: 10.1016/j.neuropharm.2003.09.019 15080077

21. Manahan-Vaughan D, Kulla A. Regulation of depotentiation and long-term potentiation in the dentate gyrus of freely moving rats by dopamine D2-like receptors. Cereb Cortex. 2003;13(2):123–35. doi: 10.1093/cercor/13.2.123 12507943

22. Paxinos G, Watson CW. The rat brain in stereotaxic coordinates. New York: Academic press; 1986.

23. Racine R, Rose PA, Burnham WM. Afterdischarge thresholds and kindling rates in dorsal and ventral hippocampus and dentate gyrus. Can J Neurol Sci. 1977;4(4):273–8. doi: 10.1017/s0317167100025117 597802

24. Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K. Short protocols in molecular biology: a compendium of methods from Current protocols in molecular biology. Greene Pub. Associates, New York. 1992;232.

25. Suarez LM, Cid E, Gal B, Inostroza M, Brotons-Mas JR, Gomez-Dominguez D, de la Prida LM, Solis JM. Systemic injection of kainic acid differently affects LTP magnitude depending on its epileptogenic efficiency. PLoS One. 2012;7(10):e48128. doi: 10.1371/journal.pone.0048128 23118939

26. Reid IC, Stewart CA. Seizures, memory and synaptic plasticity. Seizure. 1997;6(5):351–9. 9663798

27. Asgari A, Semnanian S, Atapour N, Shojaei A, Moradi H, Mirnajafi-Zadeh J. Combined sub-threshold dosages of phenobarbital and low-frequency stimulation effectively reduce seizures in amygdala-kindled rats. Neurol Sci. 2014;35(8):1255–60. doi: 10.1007/s10072-014-1693-9 24609823

28. Esmaeilpour K, Masoumi-Ardakani Y, Sheibani V, Shojaei A, Harandi S, Mirnajafi-Zadeh J. Comparing the anticonvulsant effects of low frequency stimulation of different brain sites on the amygdala kindling acquisition in rats. Basic Clin Neurosci. 2013;4(3):250–6. 25337354

29. Goodman JH, Berger RE, Tcheng TK. Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures. Epilepsia. 2005;46(1):1–7. doi: 10.1111/j.0013-9580.2005.03804.x 15660762

30. Bliss TV, Collingridge GL, Morris RG. Synaptic plasticity in health and disease: introduction and overview. Philos Trans R Soc Lond B Biol Sci. 2014;369(1633):20130129. doi: 10.1098/rstb.2013.0129 24298133

31. Kumar A. Long-Term Potentiation at CA3-CA1 Hippocampal Synapses with Special Emphasis on Aging, Disease, and Stress. Front Aging Neurosci. 2011;3:7. doi: 10.3389/fnagi.2011.00007 21647396

32. Cohen AS, Lin DD, Quirk GL, Coulter DA. Dentate granule cell GABA(A) receptors in epileptic hippocampus: enhanced synaptic efficacy and altered pharmacology. Eur J Neurosci. 2003;17(8):1607–16. doi: 10.1046/j.1460-9568.2003.02597.x 12752378

33. Nusser Z, Hajos N, Somogyi P, Mody I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature. 1998;395(6698):172–7. doi: 10.1038/25999 9744275

34. Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996;6(4):347–470. doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I 8915675

35. Huang L, Zhao LB, Yu ZY, He XJ, Ma LP, Li N, Guo LJ, Feng WY. Long-term inhibition of Rho-kinase restores the LTP impaired in chronic forebrain ischemia rats by regulating GABAA and GABAB receptors. Neuroscience. 2014;277:383–91. doi: 10.1016/j.neuroscience.2014.07.015 25050822

36. Vizi ES, Kiss JP. Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus. 1998;8(6):566–607. doi: 10.1002/(SICI)1098-1063(1998)8:6<566::AID-HIPO2>3.0.CO;2-W 9882017

37. Miyamoto E. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci. 2006;100(5):433–42. doi: 10.1254/jphs.cpj06007x 16799259

38. Ekonomou A, Smith AL, Angelatou F. Changes in AMPA receptor binding and subunit messenger RNA expression in hippocampus and cortex in the pentylenetetrazole-induced 'kindling' model of epilepsy. Brain Res Mol Brain Res. 2001;95(1–2):27–35. doi: 10.1016/s0169-328x(01)00230-3 11687274

39. Kohr G, Mody I. Kindling increases N-methyl-D-aspartate potency at single N-methyl-D-aspartate channels in dentate gyrus granule cells. Neuroscience. 1994;62(4):975–81. doi: 10.1016/0306-4522(94)90336-0 7531306

40. Yeh GC, Bonhaus DW, Nadler JV, McNamara JO. N-methyl-D-aspartate receptor plasticity in kindling: quantitative and qualitative alterations in the N-methyl-D-aspartate receptor-channel complex. Proc Natl Acad Sci U S A. 1989;86(20):8157–60. doi: 10.1073/pnas.86.20.8157 2479019

41. Cincotta M, Young NA, Beart PM. Unilateral up-regulation of glutamate receptors in limbic regions of amygdaloid-kindled rats. Exp Brain Res. 1991;85(3):650–8. doi: 10.1007/bf00231751 1680740

42. Andre VM, Flores-Hernandez J, Cepeda C, Starling AJ, Nguyen S, Lobo MK, Vinters HV, Levine MS, Mathern GW. NMDA receptor alterations in neurons from pediatric cortical dysplasia tissue. Cereb Cortex. 2004;14(6):634–46. doi: 10.1093/cercor/bhh024 15054078

43. DeFazio RA, Hablitz JJ. Alterations in NMDA receptors in a rat model of cortical dysplasia. J Neurophysiol. 2000;83(1):315–21. doi: 10.1152/jn.2000.83.1.315 10634874

44. Mikuni N, Babb TL, Ying Z, Najm I, Nishiyama K, Wylie C, Yacubova K, Okamoto T, Bingaman W. NMDA-receptors 1 and 2A/B coassembly increased in human epileptic focal cortical dysplasia. Epilepsia. 1999;40(12):1683–7. doi: 10.1111/j.1528-1157.1999.tb01584.x 10612330

45. White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol. 2001;49(1):67–78. doi: 10.1002/1531-8249(200101)49:1<67::aid-ana10>3.0.co;2-l 11198298

46. Ying Z, Babb TL, Comair YG, Bingaman W, Bushey M, Touhalisky K. Induced expression of NMDAR2 proteins and differential expression of NMDAR1 splice variants in dysplastic neurons of human epileptic neocortex. J Neuropathol Exp Neurol. 1998;57(1):47–62. doi: 10.1097/00005072-199801000-00007 9600197

47. Barria A, Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005;48(2):289–301. doi: 10.1016/j.neuron.2005.08.034 16242409

48. O'Dell TJ, Kandel ER. Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learn Mem. 1994;1(2):129–39. 10467591

49. Zhuo M, Zhang W, Son H, Mansuy I, Sobel RA, Seidman J, Kandel ER. A selective role of calcineurin aalpha in synaptic depotentiation in hippocampus. Proc Natl Acad Sci U S A. 1999;96(8):4650–5. doi: 10.1073/pnas.96.8.4650 10200317

50. Huang CC, Liang YC, Hsu KS. Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. J Biol Chem. 2001;276(51):48108–17. doi: 10.1074/jbc.M106388200 11679581

51. Soderling TR, Derkach VA. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000;23(2):75–80. doi: 10.1016/s0166-2236(99)01490-3 10652548

52. Bonansco C, Fuenzalida M. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain. Neural Plast. 2016;2016:8607038. doi: 10.1155/2016/8607038 27006834

53. Khazipov R, Valeeva G, Khalilov I. Depolarizing GABA and developmental epilepsies. CNS Neurosci Ther. 2015;21(2):83–91. doi: 10.1111/cns.12353 25438879

54. Cifelli P, Palma E, Roseti C, Verlengia G, Simonato M. Changes in the sensitivity of GABAA current rundown to drug treatments in a model of temporal lobe epilepsy. Front Cell Neurosci. 2013;7:108. doi: 10.3389/fncel.2013.00108 23874269

55. Palma E, Roseti C, Maiolino F, Fucile S, Martinello K, Mazzuferi M, Aronica E, Manfredi M, Esposito V, Cantore G, Miledi R, Simonato M, Eusebi F. GABA(A)-current rundown of temporal lobe epilepsy is associated with repetitive activation of GABA(A) "phasic" receptors. Proc Natl Acad Sci U S A. 2007;104(52):20944–8. doi: 10.1073/pnas.0710522105 18083839

56. Evans MS, Cady CJ, Disney KE, Yang L, Laguardia JJ. Three brief epileptic seizures reduce inhibitory synaptic currents, GABA(A) currents, and GABA(A)-receptor subunits. Epilepsia. 2006;47(10):1655–64. doi: 10.1111/j.1528-1167.2006.00634.x 17054688

57. Gonzalez MI, Grabenstatter HL, Cea-Del Rio CA, Cruz Del Angel Y, Carlsen J, Laoprasert RP, White AM, Huntsman MM, Brooks-Kayal A. Seizure-related regulation of GABAA receptors in spontaneously epileptic rats. Neurobiol Dis. 2015;77:246–56. doi: 10.1016/j.nbd.2015.03.001 25769812

58. Maru E, Kanda M, Ashida H. Functional and morphological changes in the hippocampal neuronal circuits associated with epileptic seizures. Epilepsia. 2002;43 Suppl 9:44–9.

59. Leung LS, Wu K. Epilepsy-based changes in hippocampal excitability: causes and effects. Adv Neurol. 2006;97:63–8. 16383115

60. Clark M, Massenburg GS, Weiss SR, Post RM. Analysis of the hippocampal GABAA receptor system in kindled rats by autoradiographic and in situ hybridization techniques: contingent tolerance to carbamazepine. Brain Res Mol Brain Res. 1994;26(1–2):309–19. doi: 10.1016/0169-328x(94)90104-x 7854061

61. Kamphuis W, De Rijk TC, Lopes da Silva FH. Expression of GABAA receptor subunit mRNAs in hippocampal pyramidal and granular neurons in the kindling model of epileptogenesis: an in situ hybridization study. Brain Res Mol Brain Res. 1995;31(1–2):33–47. doi: 10.1016/0169-328x(95)00022-k 7476032

62. Olsen RW, Avoli M. GABA and epileptogenesis. Epilepsia. 1997;38(4):399–407. doi: 10.1111/j.1528-1157.1997.tb01728.x 9118844

63. Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ, Brooks-Kayal AR. BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci Signal. 2008;1(41):ra9. doi: 10.1126/scisignal.1162396 18922788

64. Titulaer MN, Ghijsen WE, Kamphuis W, De Rijk TC, Lopes da Silva FH. Opposite changes in GABAA receptor function in the CA1-3 area and fascia dentata of kindled rat hippocampus. J Neurochem. 1995;64(6):2615–21. doi: 10.1046/j.1471-4159.1995.64062615.x 7760041

65. Joshi S, Kapur J. GABAA Receptor Plasticity During Status Epilepticus. In: th, Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper's Basic Mechanisms of the Epilepsies. Bethesda (MD)2012.

66. Kang J, Jiang L, Goldman SA, Nedergaard M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci. 1998;1(8):683–92. doi: 10.1038/3684 10196584

67. Zeng X, Xie XH, Tietz EI. Reduction of GABA-mediated inhibitory postsynaptic potentials in hippocampal CA1 pyramidal neurons following oral flurazepam administration. Neuroscience. 1995;66(1):87–99. doi: 10.1016/0306-4522(94)00558-m 7637878

68. Blumcke I, Becker AJ, Klein C, Scheiwe C, Lie AA, Beck H, Waha A, Friedl MG, Kuhn R, Emson P, Elger C, Wiestler OD. Temporal lobe epilepsy associated up-regulation of metabotropic glutamate receptors: correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients. J Neuropathol Exp Neurol. 2000;59(1):1–10. doi: 10.1093/jnen/59.1.1 10744030

69. Keele NB, Zinebi F, Neugebauer V, Shinnick-Gallagher P. Epileptogenesis up-regulates metabotropic glutamate receptor activation of sodium-calcium exchange current in the amygdala. J Neurophysiol. 2000;83(4):2458–62. doi: 10.1152/jn.2000.83.4.2458 10758147


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#