A new early Eocene deperetellid tapiroid illuminates the origin of Deperetellidae and the pattern of premolar molarization in Perissodactyla
Autoři:
Bin Bai aff001; Jin Meng aff001; Fang-Yuan Mao aff001; Zhao-Qun Zhang aff001; Yuan-Qing Wang aff001
Působiště autorů:
Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
aff001; CAS Center for Excellence in Life and Paleoenviroment, Beijing, China
aff002; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
aff003; Division of Paleontology, American Museum of Natural History, New York, United States of America
aff004; Earth and Environmental Sciences, Graduate Center, City University of New York, New York, United States of America
aff005; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
aff006
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225045
Souhrn
Deperetellidae is a clade of peculiar, Asian endemic tapiroids from the early and middle Eocene. The previously published material mainly comprises maxillae, mandibles, and some postcranial elements. However, the absence of cranial materials and primitive representatives of the deperetellids obscures their phylogenetic relationships within Tapiroidea. Furthermore, derived deperetellids have completely molarized premolars, but the pattern of their evolution remains unclear. Here, we report a nearly complete skull and some carpals of a new basal deperetellid tapiroid, Irenolophus qii gen. et sp. nov., from the late early Eocene of the Erlian Basin, Inner Mongolia, China. We suggest that deperetellids (along with Tapiridae) probably also arose from some basal ‘helaletids’, based on the reduced, flat, lingually depressed metacones on the upper molars, the trend towards the bilophodonty on the lower molars, and a shallow narial notch with the premaxilla in contact with the nasal. The molarization of the premolars in Deperetellidae from Irenolophus through Teleolophus to Deperetella was initiated and gradually enhanced by the separation between the paraconule and the protocone. That pattern differs from the protocone-hypocone separation in helaletids, tapirids, and most rhinoceroses, and the metaconule-derived pseudohypocone in amynodontids. However, the specific relationship of deperetellids within Tapiroidea and the roles of different patterns of premolar molarization in perissodactyl evolution need further and comprehensive study.
Klíčová slova:
Teeth – Molars – Mandible – New species reports – Maxilla – Eocene epoch – Prisms
Zdroje
1. Radinsky LB. Early Tertiary Tapiroidea of Asia. Bull Am Mus Nat Hist. 1965; 129(2): 181–264.
2. Tsubamoto T, Egi N, Takai M, Sein C, Maung M. Middle Eocene ungulate mammals from Myanmar: A review with description of new specimens. Acta Palaeontol Pol. 2005; 50(1): 117–38.
3. Averianov AO, Godinot M. Ceratomorphs (Mammalia, Perissodactyla) from the early Eocene Andarak 2 locality in Kyrgyzstan. Geodiversitas. 2005; 27(2): 221–37.
4. Tsubamoto T, Tsogtbaatar K, Watabe M, Saneyoshi M, Tsogtbaatar C. The function of the crown cementum of Teleolophus, an Eocene deperetellid perissodactyl. Journal of Fossil Research. 2012; 44: 78–9.
5. von Koenigswald W, Holbrook LT, Rose KD. Diversity and evolution of Hunter-Schreger Band configuration in tooth enamel of perissodactyl mammals. Acta Palaeontol Pol. 2011; 56(1): 11–32. doi: 10.4202/app.2010.0021
6. Bai B, Wang YQ, Meng J. Postcranial morphology of Middle Eocene deperetellid Teleolophus (Perissodactyla, Tapiroidea) from Shara Murun region of the Erlian Basin, Nei Mongol, China. Vert PalAsiat. 2018; 56(3): 193–215.
7. Radinsky LB. Evolution of the Tapiroid skeleton from Heptodon to Tapirus. Bull Mus Comp Zool. 1965; 134(3): 69–106.
8. Colbert MW. The facial skeleton of the early Oligocene Colodon (Perissodactyla, Tapiroidea). Palaeontol Electron. 2005; 8(1): 1–27.
9. Reshetov VY. Morphology of skull of Asiatic Eocene Tapiroid (Lophialetes expeditus Matthew et Granger, 1925). Journal of the Palaeontological Society of India. 1977; 20: 41–7.
10. Holbrook LT. The phylogeny and classification of Tapiromorph Perissodactyls (Mammalia). Cladistics. 1999; 15(3): 331–50.
11. Matthew WD, Granger W. New mammals from the Shara Murun Eocene of Mongolia. Am Mus Novit. 1925; 196: 1–12.
12. Radinsky L. Origin and early evolution of North American Tapiroidea. Bull Peabody Mus Nat Hist. 1963; 17: 1–106.
13. Scott WB. The mammalian fauna of the White River Oligocene. Part 5. Perissodactyla. Trans Am Philos Soc. 1941; 28: 747–980.
14. Qi T. The Middle Eocene Arshanto Fauna (Mammalia) of Inner Mongolia. Ann Carnegie Mus. 1987; 56: 1–73.
15. Qiu ZX, Wang BY. Paracerathere fossils of China. Palaeont Sin, New Ser C. 2007; 29: 1–396.
16. Bai B, Wang YQ, Mao FY, Meng J. New Material of Eocene Helaletidae (Perissodactyla, Tapiroidea) from the Irdin Manha Formation of the Erlian Basin, Inner Mongolia, China and Comments on Related Localities of the Huheboerhe Area. Am Mus Novit. 2017; 3878(3878): 1–44. doi: 10.1206/3878.1
17. Wang YQ, Meng J, Jin X. Comments on Paleogene localities and stratigraphy in the Erlian Basin, Nei Mongol, China. Vert PalAsiat. 2012; 50(3): 181–203.
18. Meng J, Wang YQ, Ni XJ, Beard KC, Sun C, Li Q, et al. New stratigraphic data from the Erlian Basin: Implications for the division, correlation, and definition of Paleogene lithological units in Nei Mongol (Inner Mongolia). Am Mus Novit. 2007; 3570: 1–31.
19. Sun B, Yue LP, Wang YQ, Meng J, Wang JQ, Xu Y. Magnetostratigraphy of the Early Paleogene in the Erlian Basin. Journal of Stratigraphy. 2009; 33: 62–8.
20. Mao FY, Li Chuan-Kui, Meng Jin, Li Qian, Bai Bin, Wang Yuan-Qing ZZ-Q, Zhao Ling-Xia, Wang Ban-Yue. Introduction to terminologies of tooth enamel microstructures and a proposal for their standard Chinese translations. Vert PalAsiat. 2017; 55(4): 347–66.
21. Fortelius M. Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zool Fenn. 1985; 180: 1–76.
22. Rensberger JM, von Koenigswald W. Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology. 1980; 6(4): 477–95.
23. Boyde A, Fortelius M. Development, structure and function of rhinoceros enamel. Zool J Linn Soc. 1986; 87(2): 181–214.
24. Rensberger JM. Evidence from the enamel microstructure for reversals in dietary behavior in the transition from primitive ceratomorpha to rhinocerotoidea Bulletin of Carnegie Museum of Natural History. 2004; 36(1): 199–210.
25. Matthew WD, Granger W. The smaller perissodactyls of the Irdin Manha Formation, Eocene of Mongolia. Am Mus Novit. 1925; 199: 1–9.
26. Simpson GG. The principles of classification and a classification of mammals. Bull Am Mus Nat Hist. 1945; 85: 1–350.
27. Gromova V. Mlekopitayushchie. In: Orlov JA, editor. Osnovy Paleontologii, Spravochnik dlya paleontologov i geologov SSSR Moscow1962. p. 1–420.
28. Tong YS, Lei YZ. Fossil tapiroids from the upper Eocene of Xichuan, Henan. Vert PalAsiat. 1984; 22: 269–80.
29. Zdansky O. Die alttertiären Säugetiere Chinas nebst stratigraphischen Bemerkungen. Palaeontol Sin Ser C. 1930; 6: 5–87.
30. Hooker JJ. Character polarities in early Eocene perissodactyls and their significance for Hyracotherium and infraordinal relationships. In: Prothero DR, Schoch RM, editors. The evolution of perissodactyls. New York: Oxford University Press; 1989. p. 79–101.
31. Dashzeveg D, Hooker JJ. New ceratomorph perissodactyls (Mammalia) from the Middle and Late Eocene of Mongolia: their implications for phylogeny and dating. Zool J Linn Soc. 1997; 120: 105–38.
32. Osborn HF. Titanotheres and lophiodonts in Mongolia. Am Mus Novit. 1923; 91: 1–5.
33. Bai B, Wang Y, Meng J, Li Q, Jin X. New Early Eocene basal tapiromorph from Southern China and Its phylogenetic implications. PLoS One. 2014; 9(10): 1–9. doi: 10.1371/journal.pone.0110806 25353987
34. Smith T, Solé F, Missiaen P, Rana R, Kumar K, Sahni A, et al. First early Eocene tapiroid from India and its implication for the paleobiogeographic origin of perissodactyls. Palaeovertebrata. 2015; 39((2)-e5): 1–9. doi: 10.18563/pv.39.2.e5
35. Hunter JP, Jernvall J. The hypocone as a key innovation in mammalian evolution. Proc Natl Acad Sci U S A. 1995; 92(23): 10718–22. doi: 10.1073/pnas.92.23.10718 7479871
36. Butler PM. Molarization of the premolars in the Perissodactyla. P Zool Soc Lond. 1952; 121(4): 819–43.
37. Prothero D. The evolution of North American Rhinoceroses. Cambridge; New York; Melbourne: Cambridge University Press.; 2005.
38. Holbrook L. The identity and homology of the postprotocrista and its role in molarization of upper premolars of Perissodactyla (Mammalia). Journal of Mammalian Evolution. 2015; 22(2): 259–69. doi: 10.1007/s10914-014-9276-3
39. Granger W. A revision of the American Eocene horses. Bull Am Mus Nat Hist. 1908; 24(15): 221–64.
40. Schlaikjer E. A new tapir from the Lower Miocene of Wyoming. Bull Mus Comp Zool. 1937; 80(4): 229–51.
41. Wood HE. Revision of the Hyrachyidae. Bull Am Mus Nat Hist. 1934; 67(5): 181–295.
42. Radinsky LB. Hyrachyus, Chasmotherium, and the early evolution of Helatetid tapiroids. Am Mus Novit. 1967; 2313: 1–23.
43. Wilson J, Schiebout J. Early Tertiary vertebrate faunas, Trans-Pecos Texas: Amynodontidae. Texas Memorial Museum Pearce-Sellards Series. 1981; 33: 1–62.
44. Wood HE, Scott WB. Family Amynodontidae. Trans Am Philos Soc. 1945; 34: 249–52.
45. You YZ. Note on the new genus of early Tertiary Rhinocerotidae from Bose, Guangxi. Vert PalAsiat. 1977; 15(1): 46–53.
46. Ladeveze S, Missiaen P, Smith T. First skull of Orthaspidotherium edwardsi (Mammalia, "Condylarthra") from the late Paleocene of Berru (France) and phylogenetic affinities of the enigmatic European family Pleuraspidotheriidae. J Vert Paleont. 2010; 30(5): 1559–78. doi: 10.1080/02724634.2010.501440
47. Gheerbrant E, Filippo A, Schmitt A. Convergence of Afrotherian and Laurasiatherian ungulate-like mammals: first morphological evidence from the Paleocene of Morocco. PLoS One. 2016; 11(7): e0157556. doi: 10.1371/journal.pone.0157556 27384169
48. Harjunmaa E, Seidel K, Häkkinen T, Renvoisé E, Corfe IJ, Kallonen A, et al. Replaying evolutionary transitions from the dental fossil record. Nature. 2014; 512(7512): 44. doi: 10.1038/nature13613 25079326
49. Jernvall J, Jung HS. Genotype, phenotype, and developmental biology of molar tooth characters. Am J Phys Anthropol. 2000; 113(S31): 171–90.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF