Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning
Autoři:
Daisuke Nagasato aff001; Hitoshi Tabuchi aff001; Hiroki Masumoto aff001; Hiroki Enno aff002; Naofumi Ishitobi aff001; Masahiro Kameoka aff001; Masanori Niki aff003; Yoshinori Mitamura aff003
Působiště autorů:
Department of Ophthalmology, Tsukazaki Hospital, Himeji, Japan
aff001; Rist Incorporated, Tokyo, Japan
aff002; Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223965
Souhrn
We aimed to assess the ability of deep learning (DL) and support vector machine (SVM) to detect a nonperfusion area (NPA) caused by retinal vein occlusion (RVO) with optical coherence tomography angiography (OCTA) images. The study included 322 OCTA images (normal: 148; NPA owing to RVO: 174 [128 branch RVO images and 46 central RVO images]). Training to construct the DL model using deep convolutional neural network (DNN) algorithms was provided using OCTA images. The SVM used a scikit-learn library with a radial basis function kernel. The area under the curve (AUC), sensitivity and specificity for detecting an NPA were examined. We compared the diagnostic ability (sensitivity, specificity and average required time) between the DNN, SVM and seven ophthalmologists. Heat maps were generated. With regard to the DNN, the mean AUC, sensitivity, specificity and average required time for distinguishing RVO OCTA images with an NPA from normal OCTA images were 0.986, 93.7%, 97.3% and 176.9 s, respectively. With regard to SVM, the mean AUC, sensitivity, and specificity were 0.880, 79.3%, and 81.1%, respectively. With regard to the seven ophthalmologists, the mean AUC, sensitivity, specificity and average required time were 0.962, 90.8%, 89.2%, and 700.6 s, respectively. The DNN focused on the foveal avascular zone and NPA in heat maps. The performance of the DNN was significantly better than that of SVM in all parameters (p < 0.01, all) and that of the ophthalmologists in AUC and specificity (p < 0.01, all). The combination of DL and OCTA images had high accuracy for the detection of an NPA, and it might be useful in clinical practice and retinal screening.
Klíčová slova:
Eyes – Tomography – Neural networks – Angiography – Support vector machines – Diabetic retinopathy – Retinal vessels – Capillaries
Zdroje
1. Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010;117: 313–319.e311. doi: 10.1016/j.ophtha.2009.07.017 20022117
2. Yasuda M, Kiyohara Y, Arakawa S, Hata Y, Yonemoto K, Doi Y, et al. Prevalence and systemic risk factors for retinal vein occlusion in a general Japanese population: the Hisayama study. Invest Ophthalmol Vis Sci. 2010;51: 3205–3209. doi: 10.1167/iovs.09-4453 20071683
3. Campa C, Alivernini G, Bolletta E, Parodi MB, Perri P. Anti-VEGF therapy for retinal vein occlusions. Curr Drug Targets. 2016;17: 328–336. doi: 10.2174/1573399811666150615151324 26073857
4. MacDonald D. The ABCs of RVO: a review of retinal venous occlusion. Clin Exp Optom. 2014;97: 311–323. doi: 10.1111/cxo.12120 24256639
5. Rogers SL, McIntosh RL, Lim L, Mitchell P, Cheung N, Kowalski JW, et al. Natural history of branch retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117: 1094–1101.e1095. doi: 10.1016/j.ophtha.2010.01.058 20430447
6. Boyer D, Heier J, Brown DM, Clark WL, Vitti R, Berliner AJ, et al. Vascular endothelial growth factor trap-eye for macular edema secondary to central retinal vein occlusion: six-month results of the phase 3 COPERNICUS study. Ophthalmology. 2012;119: 1024–1032. doi: 10.1016/j.ophtha.2012.01.042 22440275
7. Brown DM, Campochiaro PA, Singh RP, Li Z, Gray S, Saroj N, et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117: 1124–1133.e1121. doi: 10.1016/j.ophtha.2010.02.022 20381871
8. Brown DM, Heier JS, Clark WL, Boyer DS, Vitti R, Berliner AJ, et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study. Am J Ophthalmol. 2013;155: 429–437.e427. doi: 10.1016/j.ajo.2012.09.026 23218699
9. Campochiaro PA, Brown DM, Awh CC, Lee SY, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 2011;118: 2041–2049. doi: 10.1016/j.ophtha.2011.02.038 21715011
10. Holz FG, Roider J, Ogura Y, Korobelnik JF, Simader C, Groetzbach G, et al. VEGF trap-eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study. Br J Ophthalmol. 2013;97: 278–284. doi: 10.1136/bjophthalmol-2012-301504 23298885
11. Brown DM, Campochiaro PA, Bhisitkul RB, Ho AC, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology. 2011;118: 1594–1602. doi: 10.1016/j.ophtha.2011.02.022 21684606
12. Heier JS, Campochiaro PA, Yau L, Li Z, Saroj N, Rubio RG, et al. Ranibizumab for macular edema due to retinal vein occlusions: long-term follow-up in the HORIZON trial. Ophthalmology. 2012;119: 802–809. doi: 10.1016/j.ophtha.2011.12.005 22301066
13. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20: 4710–4725. doi: 10.1364/OE.20.004710 22418228
14. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35: 2377–2383. doi: 10.1097/IAE.0000000000000849 26457396
15. Suzuki N, Hirano Y, Yoshida M, Tomiyasu T, Uemura A, Yasukawa T, et al. Microvascular abnormalities on optical coherence tomography angiography in macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2016;161: 126–132.e121. doi: 10.1016/j.ajo.2015.09.038 26454243
16. Coscas F, Glacet-Bernard A, Miere A, Caillaux V, Uzzan J, Lupidi M, et al. Optical coherence tomography angiography in retinal vein occlusion: evaluation of superficial and deep capillary plexa. Am J Ophthalmol. 2016;161: 160–171.e161-e162. doi: 10.1016/j.ajo.2015.10.008 26476211
17. Balaratnasingam C, Inoue M, Ahn S, McCann J, Dhrami-Gavazi E, Yannuzzi LA, et al. Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology. 2016;123: 2352–2367. doi: 10.1016/j.ophtha.2016.07.008 27523615
18. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521: 436–444. doi: 10.1038/nature14539 26017442
19. Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng. 2015;62: 1132–1140. doi: 10.1109/TBME.2014.2372011 25423647
20. Litjens G, Sanchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016;6: 26286. doi: 10.1038/srep26286 27212078
21. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316: 2402–2410. doi: 10.1001/jama.2016.17216 27898976
22. Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, et al. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep. 2016;6: 38897. doi: 10.1038/srep38897 27941946
23. Hosny KM, Kassem MA, Foaud MM. Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS One. 2019;14: e0217293. doi: 10.1371/journal.pone.0217293 31112591
24. Yu C, Yang S, Kim W, Jung J, Chung KY, Lee SW, et al. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS One. 2018;13: e0193321. doi: 10.1371/journal.pone.0193321 29513718
25. Zielinski B, Plichta A, Misztal K, Spurek P, Brzychczy-Wloch M, Ochonska D. Deep learning approach to bacterial colony classification. PLoS One. 2017;12: e0184554. doi: 10.1371/journal.pone.0184554 28910352
26. Yu C, Yang S, Kim W, Jung J, Chung KY, Lee SW, et al. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS One. 2018;13: e0193321. doi: 10.1371/journal.pone.0193321 29513718
27. Hosny KM, Kassem MA, Foaud MM. Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS One. 2019;14: e0217293. doi: 10.1371/journal.pone.0217293 31112591
28. Zielinski B, Plichta A, Misztal K, Spurek P, Brzychczy-Wloch M, Ochonska D. Deep learning approach to bacterial colony classification. PLoS One. 2017;12: e0184554. doi: 10.1371/journal.pone.0184554 28910352
29. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124: 962–969. doi: 10.1016/j.ophtha.2017.02.008 28359545
30. Ohsugi H, Tabuchi H, Enno H, Ishitobi N. Accuracy of deep learning, a machine-learning technology, using ultra–wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment. Sci Rep. 2017;7: 9425. doi: 10.1038/s41598-017-09891-x 28842613
31. Nagasato D, Tabuchi H, Ohsugi H, Masumoto H, Enno H, Ishitobi N, et al. Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion. Int J Ophthalmol. 2019;12: 94–99. doi: 10.18240/ijo.2019.01.15 30662847
32. Nagasato D, Tabuchi H, Ohsugi H, Masumoto H, Enno H, Ishitobi N, et al. Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy. J Ophthalmol. 2018;2018: 1875431. doi: 10.1155/2018/1875431 30515316
33. Guo Y, Camino A, Wang J, Huang D, Hwang TS, Jia Y. MEDnet, a neural network for automated detection of avascular area in OCT angiography. Biomed Opt Express. 2018;9: 5147–5158. doi: 10.1364/BOE.9.005147 30460119
34. Mosteller F, Tukey JW. Data analysis, including statistics. In: Lindzey G, Aronson E, editors. Handbook of social psychology. Reading, MA: Addison–Wesley; 1968. pp. 80–203.
35. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International joint conference on artificial intelligence. Montreal, Quebec, Canada: Morgan Kaufmann Publishers Inc.; 1995. pp. 1137–1143.
36. Deng J, Dong W, Socher R, Li L, Kai L, Li F-F. ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. Miami, FL: IEEE; 2009. pp. 248–255.
37. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large scale visual recognition challenge. Int J Comp Vision. 2015;115: 211–252.
38. Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-supervised nets. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS). San Diego, CA, USA: Journal of Machine Learning Research Workshop and Conference Proceedings; 2015. pp. 562–570.
39. Scherer D, Müller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras K, Duch W, Iliadis LS, editiors. Artificial neural networks–ICANN 2010. Berlin, Heidelberg: Springer Berlin; 2010. pp. 92–101.
40. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Proceedings of the 14th International conference on artificial intelligence and statistics. Fort Lauderdale, FL: PMLR; 2011. pp. 315–323.
41. Redmon J, Divvala S, Girshick R, Farhadi F. You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference computer vision and pattern recognition. Piscataway, NJ: IEEE; 2016. pp. 779–788.
42. Agrawal P, Girshick R, Malik J. Analyzing the performance of multilayer neural networks for object recognition. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer vision–ECCV 2014. Cham: Springer International Publishing; 2014. pp. 329–344.
43. Qian N. On the momentum term in gradient descent learning algorithms. Neural Networks. 1999;12: 145–151. 12662723
44. Nesterov Y. A method for unconstrained convex minimization problem with the rate of convergence O (1/k^2). Doklady AN USSR. 1983;269: 543–547.
45. Brereton RG, Lloyd GR. Support vector machines for classification and regression. Analyst. 2010;135: 230–267. doi: 10.1039/b918972f 20098757
46. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143: 29–36. doi: 10.1148/radiology.143.1.7063747 7063747
47. Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull. 1971;76: 378–382.
48. Bartko JJ, Carpenter WT Jr. On the methods and theory of reliability. J Nerv Ment Dis. 1976;163: 307–317. doi: 10.1097/00005053-197611000-00003 978187
49. Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96: 644–647. doi: 10.1111/j.1651-2227.2006.00178.x 17376185
50. Lee J, Rosen R. Optical coherence tomography angiography in diabetes. Curr Diab Rep. 2016;16: 123. doi: 10.1007/s11892-016-0811-x 27766583
51. Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134: 367–373. doi: 10.1001/jamaophthalmol.2015.5658 26795548
52. Shariati MA, Park JH, Liao YJ. Optical coherence tomography study of retinal changes in normal aging and after ischemia. Invest Ophthalmol Vis Sci. 2015;56: 2790–2797. doi: 10.1167/iovs.14-15145 25414186
53. Fan W, Wang K, Falavarjani KG, Sagong M, Uji A, Ip M, et al. Distribution of nonperfusion area on ultra-widefield fluorescein angiography in eyes with diabetic macular edema: DAVE study. Am J Ophthalmol. 2017;180: 110–116. doi: 10.1016/j.ajo.2017.05.024 28579062
54. Tang FY, Ng DS, Lam A, Luk F, Wong R, Chan C, et al. Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes. Sci Rep. 2017;7: 2575. doi: 10.1038/s41598-017-02767-0 28566760
55. Kim K, Kim ES, Yu SY. Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes. Br J Ophthalmol. 2018;102: 1226–1231. doi: 10.1136/bjophthalmol-2017-311149 29259019
56. Kim KH, Choi SH, Park SH. Improving arterial spin labeling by using deep learning. Radiology. 2018;287: 658–666. doi: 10.1148/radiol.2017171154 29267145
57. Koulisis N, Kim AY, Chu Z, Shahidzadeh A, Burkemper B, de Koo LCO, et al. Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography. PLoS One. 2017;12: e0176404. doi: 10.1371/journal.pone.0176404 28437483
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF