#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Questioning the lasting effect of galvanic vestibular stimulation on postural control


Autoři: Mujda Nooristani aff001;  Maxime Maheu aff001;  Marie-Soleil Houde aff001;  Benoit-Antoine Bacon aff004;  François Champoux aff001
Působiště autorů: École d’orthophonie et d’audiologie, Université de Montréal, Montréal, Québec, Canada aff001;  CIUSSS Centre-Sud-de-l’Île-de-Montréal, Montréal, Québec, Canada aff002;  Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada aff003;  Department of Psychology, Carleton University, Ottawa, Ontario, Canada aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224619

Souhrn

Noisy galvanic vestibular stimulation (nGVS) has been shown to enhance postural stability during stimulation, and the enhancing effect has been observed to persist for several hours post-stimulation. However, these effects were observed without proper control (sham condition) and the possibility of experimental bias has not been ruled out. The lasting effect of nGVS on postural stability therefore remains in doubt. We investigated the lasting effect of nGVS on postural stability using a control (sham) condition to confirm or infirm the possibility of experimental bias. 28 participants received either nGVS or a sham stimulation. Static postural control was examined before stimulation, immediately after 30 minutes of nGVS and one-hour post-stimulation. Results showed a significant improvement of sway velocity (p<0.05) and path length (p<0.05) was observed following nGVS, as previously shown. A similar improvement of sway velocity (p<0.05) and path length (p<0.05) was observed in sham group and no significant difference was found between nGVS group and sham group (p>0.05), suggesting that the observed postural improvement in nGVS could be due to a learning effect. This finding suggests the presence of experimental bias in the nGVS effect on postural stability, and highlights the need to use a sham condition in the exploration of the nGVS effect so as to disentangle the direct effect of the electrical stimulation from a learning effect. Furthermore, numerous parameters and populations need to be tested in order to confirm or infirm the presence of a real long-lasting effect of nGVS on postural stability.

Klíčová slova:

Learning – Elderly – Functional electrical stimulation – Young adults – Postural control – Foams – Reflexes – Mastoid process


Zdroje

1. Fitzpatrick RC, Day BL. Probing the human vestibular system with galvanic stimulation. J Appl Physiol. 2004; 96: 2301–2316. doi: 10.1152/japplphysiol.00008.2004 15133017

2. Wuehr M, Boerner JC, Pradhan C, Decker J, Jahn K, Brandt T et al. Stochastic resonance in the human vestibular system–Noise-induced facilitation of vestibulospinal reflexes. Brain Stim.2018; 11:261–263. doi: 10.1016/j.brs.2017.10.016 29100928

3. Inuikai Y, Naofumi O, Masaki M, Saito K, Miyaguchi S, Kojima S et al. Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stim. 2018; 11:85–93. doi: 10.1016/j.brs.2017.10.007 29079459

4. Inuikai Y, Masaki M, Otsuru N, Saito K, Miyaguchi S, Kojima S et al. Effect of noisy galvanic vestibular stimulation in community-dwelling elderly people: a randomised controlled trial. J Neuroeng Rehab. 2018; 15:63. doi: 10.1186/s12984-018-0407-6 29970144

5. Iwasaki S, Yamamoto Y, Togo F, Kinoshita M, Yoshifuji Y, Fujimoto C et al. Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 2014; 82(11): 969–975. doi: 10.1212/WNL.0000000000000215 24532279

6. Fujimoto C, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T et al. Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol. 2018; 9 (900). doi: 10.3389/fneur.2018.00900 30405522

7. Thapa PB, Gideon P, Brockman KG, Fought RL, Ray WA. Clinical and biomechanical measures of balance as fall predictors in ambulatory nursing home residents. J Gerontol A Biol Sci Med Sci 1996; 51: M239–M246. doi: 10.1093/gerona/51a.5.m239 8808996

8. Piirtola M, Era P. Force platform measurements as predictors of falls among older people–a review. Gerontology 2006; 52: 1–16. doi: 10.1159/000089820 16439819

9. McDonnell MD, Ward LM. The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci. 2011; 12:415–426. doi: 10.1038/nrn3061 21685932

10. Fujimoto C, Yamamoto Y, Kamogashira T, Kinoshita M, Egami N, Uemura Y et al. Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep. 2016; 6:37575. doi: 10.1038/srep37575 27869225

11. Robbins SM, Caplan RM, Aponte D, St-Onge N. Test-retest reliability of a balance testing protocol with external pertuarbations in young healthy adults. Gait Posture. 2017; 58:433–439. doi: 10.1016/j.gaitpost.2017.09.007 28910656

12. Nordahl SH, Aasen T, Dyrkorn BM, Eidsvik S, Molvaer OI. Static stabilometry and repeated testing in a normal population. Aviat Space Environ Med. 2000; 71(9): 889–893. 11001340

13. Holliday PJ, Fernie GR. Changes in the measurement of postural sway resulting from repeated testing. Agressologie 1979; 20(4): 255–258.

14. Curthoys IS, Macdougall HG, McGarvie LA, Weber KP, Szmulewicz D, Mazari L et al. The video Head Impulse test (vHIT). Dans GP, NT Jacobsen, Shepard (Eds). Balance Function Assessment and Management. (2nd edition, pp.1–16). San Diego: Plural Publishing; 2016.

15. Cohen H, Blatchly CA, Gombash LL. A study of the clinical test of sensory interaciton and balance. Phy Ther. 1993; 73(6):346–351.

16. Rugelj D, Hrastnik A, Sevsek F, Vauhnik R. Reliability of modified sensory interaction test as measured with force platform. Med Biol Eng Comp. 2015; 53:525–534. doi: 10.1007/s11517-015-1259-x 25749711

17. Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stim. 2012; 5: 505–511. doi: 10.1016/j.brs2011.11.004

18. Schniepp R, Boerner JC, Decker J, Jahn K, Brandt T, Wuehr M. Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol. 2018; 265:57–62. doi: 10.1007/s00415-018-8814-y 29508134

19. Dissanayaka T, Zoghi M, Farrell M, Egan GF, Jaberzadeh S. Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. Eur J Neurosci. 2017; 46:1968–1990. doi: 10.1111/ejn.13640 28699187

20. Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N et al. Shaping the effects of transcranial direct current stimulation of the motor cortex. J Neurophysiol. 2007; 97:3109–3117. doi: 10.1152/jn.01312.2006 17251360


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#