The winner takes it all—Competitiveness of single nodes in globalized supply networks
Autoři:
Chengyuan Han aff001; Dirk Witthaut aff001; Marc Timme aff003; Malte Schröder aff003
Působiště autorů:
Forschungszentrum Jülich, Institute for Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE), Jülich, Germany
aff001; Institute for Theoretical Physics, University of Cologne, Köln, Germany
aff002; Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, TU Dresden, Dresden, Germany
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225346
Souhrn
Quantifying the importance and power of individual nodes depending on their position in socio-economic networks constitutes a problem across a variety of applications. Examples include the reach of individuals in (online) social networks, the importance of individual banks or loans in financial networks, the relevance of individual companies in supply networks, and the role of traffic hubs in transport networks. Which features characterize the importance of a node in a trade network during the emergence of a globalized, connected market? Here we analyze a model that maps the evolution of global connectivity in a supply network to a percolation problem. In particular, we focus on the influence of topological features of the node within the underlying transport network. Our results reveal that an advantageous position with respect to different length scales determines the competitiveness of a node at different stages of the percolation process and depending on the speed of the cluster growth.
Klíčová slova:
Network analysis – Economics – Transportation – Centrality – Economic agents – Scale-free networks – Statistical mechanics – Economic geography
Zdroje
1. Newman MEJ. The Structure and Function of Complex Networks. SIAM Review. 2003;45(2):167–256. doi: 10.1137/S003614450342480
2. Albert R, Barabási AL. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74(1):47. doi: 10.1103/RevModPhys.74.47
3. Easley D, Kleinberg J. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, Cambridge; 2010.
4. Havlin S, Kenett DY, Ben-Jacob E, Bunde A, Cohen R, Hermann H, et al. Challenges in network science: Applications to infrastructures, climate, social systems and economics. Eur Phys J Special Topics. 2012;214(1):273–293. doi: 10.1140/epjst/e2012-01695-x
5. Krugman PR. Geography and trade. MIT press, Cambridge, MA; 1991.
6. Schweitzer F, Fagiolo G, Sornette D, Vega-Redondo F, Vespignani A, White DR. Economic networks: The new challenges. Science. 2009;325(5939):422–425. doi: 10.1126/science.1173644 19628858
7. Piccardi C, Tajoli L. Complexity, centralization, and fragility in economic networks. PloS one. 2018;13(11):e0208265. doi: 10.1371/journal.pone.0208265 30496279
8. Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, Tomkins A, Upfal E. Stochastic models for the Web graph. In: Proceedings 41st Annual Symposium on Foundations of Computer Science; 2000. p. 57–65.
9. Kumar R, Novak J, Tomkins A. In: Yu PS, Han J, Faloutsos C, editors. Structure and Evolution of Online Social Networks. New York, NY: Springer New York; 2010. p. 337–357.
10. Molkenthin N, Schröder M, Timme M. Adhesion-Induced Discontinuous Transitions and Classifying Social Networks. Phys Rev Lett. 2018;121:138301. doi: 10.1103/PhysRevLett.121.138301 30312048
11. Barabási AL, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–512. doi: 10.1126/science.286.5439.509 10521342
12. Krugman PR. Increasing returns and economic geography. J Pol Econ. 1991;99(3):483–499. doi: 10.1086/261763
13. Katz ML, Shapiro C. Systems competition and network effects. J Econ Perspect. 1994;8(2):93–115. doi: 10.1257/jep.8.2.93
14. Shapiro C, Carl S, Varian HR. Information rules: a strategic guide to the network economy. Harvard Business Press, Brighton, MA; 1998.
15. Brousseau E, Penard T. The economics of digital business models: A framework for analyzing the economics of platforms. Rev Netw Econ. 2007;6(2). doi: 10.2202/1446-9022.1112
16. Stauffer D, Aharony A. Introduction to Percolation Theory. Taylor & Francis, London; 1992.
17. Saberi AA. Recent advances in percolation theory and its applications. Phys Rep. 2015;578:1–32. doi: 10.1016/j.physrep.2015.03.003
18. D’Souza RM, Nagler J. Anomalous critical and supercritical phenomena in explosive percolation. Nat Phys. 2015;11(7):531–538. doi: 10.1038/nphys3378
19. Sole RV, Montoya M. Complexity and fragility in ecological networks. Proc Roy Soc London Ser B. 2001;268(1480):2039–2045. doi: 10.1098/rspb.2001.1767
20. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298(5594):824–827. doi: 10.1126/science.298.5594.824 12399590
21. Gastner MT, Newman MEJ. Optimal design of spatial distribution networks. Phys Rev E. 2006;74:016117. doi: 10.1103/PhysRevE.74.016117
22. Memmesheimer RM, Timme M. Designing the Dynamics of Spiking Neural Networks. Phys Rev Lett. 2006;97:188101. doi: 10.1103/PhysRevLett.97.188101 17155580
23. Ronellenfitsch H, Katifori E. Global Optimization, Local Adaptation, and the Role of Growth in Distribution Networks. Phys Rev Lett. 2016;117:138301. doi: 10.1103/PhysRevLett.117.138301 27715085
24. Bala V, Goyal S. A noncooperative model of network formation. Econometrica. 2000;68(5):1181–1229. doi: 10.1111/1468-0262.00155
25. Jackson MO, Watts A. The evolution of social and economic networks. J Econ Theory. 2002;106(2):265–295. doi: 10.1006/jeth.2001.2903
26. Even-dar E, Kearns M. A Small World Threshold for Economic Network Formation. In: Schölkopf B, Platt JC, Hoffman T, editors. Advances in Neural Information Processing Systems 19. MIT Press, Cambridge, MA; 2007. p. 385–392. Available from: http://papers.nips.cc/paper/3071-a-small-world-threshold-for-economic-network-formation.pdf.
27. Jackson MO. Social and economic networks. vol. 3. Princeton University Press, Princeton, NJ; 2008.
28. Atabati O, Farzad B. A strategic model for network formation. Comp Soc Netw. 2015;2(1):1. doi: 10.1186/s40649-014-0008-x
29. Schröder M, Nagler J, Timme M, Witthaut D. Hysteretic Percolation from Locally Optimal Individual Decisions. Phys Rev Lett. 2018;120:248302. doi: 10.1103/PhysRevLett.120.248302 29957012
30. Nagler J, Levina A, Timme M. Impact of single links in competitive percolation. Nat Phys. 2011;7(3):265–270. doi: 10.1038/nphys1860
31. Chen W, D’Souza RM. Explosive Percolation with Multiple Giant Components. Phys Rev Lett. 2011;106:115701. doi: 10.1103/PhysRevLett.106.115701 21469878
32. Cho YS, Hwang S, Herrmann HJ, Kahng B. Avoiding a spanning cluster in percolation models. Science. 2013;339(6124):1185–1187. doi: 10.1126/science.1230813 23471402
33. Sabidussi G. The centrality index of a graph. Psychometrika. 1966;31(4):581–603. doi: 10.1007/bf02289527 5232444
34. Newman MEJ. Networks: An Introduction. Oxford University Press, Oxford; 2010.
35. Freeman LC. A set of measures of centrality based on betweenness. Sociometry. 1977;40(1):35–41. doi: 10.2307/3033543
36. van Dolder D, Buskens V. Individual choices in dynamic networks: An experiment on social preferences. PloS one. 2014;9(4):e92276. doi: 10.1371/journal.pone.0092276 24732665
37. Bertsekas DP. Network optimization: continuous and discrete models. Athena Scientific, Belmont; 1998.
38. Watts A. A dynamic model of network formation. Games Econ Behav. 2001;34(2):331–341. doi: 10.1006/game.2000.0803
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF