The calcium sensor OsCBL1 modulates nitrate signaling to regulate seedling growth in rice
Autoři:
Jing Yang aff001; Xiaolong Deng aff001; Xiaoxin Wang aff001; Jingzhang Wang aff001; Shiyun Du aff002; Yangsheng Li aff001
Působiště autorů:
State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, P. R. China
aff001; Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224962
Souhrn
Nitrate signaling integrates and coordinates gene expression and plant growth; however, the underlying molecular mechanisms involved remain poorly understood. Our previous study revealed that rice calcineurin B-like protein 1 (OsCBL1) modulates lateral root elongation by affecting auxin biosynthesis. Here, we report that OsCBL1 also modulates nitrate signaling to regulate rice seedlings growth. Compared with wild-type seedlings, seedlings of OsCBL1-knockdown (OsCBL1-KD) plants showed a suppressed growth phenotype, which included reduced root and shoot fresh weights and shorter radicles, crown roots, and lateral roots, when grown in nitrogen-free conditions. Although the growth defects of OsCBL1-KD plants could be partially rescued by the addition of nitrate to the growth conditions, the nitrate uptake capability of the OsCBL1-KD plants did not differ from that of wild-type plants as assessed via nitrate content and 15NO3− influx experiments. The nitrate-regulated expression of nitrate signal sentinel genes (OsNRT2.1 and OsNRT2.2) was affected in the OsCBL1-KD plants under both long- and short-term nitrate treatments. Overall, our results showed a novel role for OsCBL1 in the regulation of nitrate signaling and nitrate-mediated rice growth.
Klíčová slova:
Gene expression – Rice – Gene regulation – Seedlings – Nitrates – Calcium signaling – Root growth – Protein kinase signaling cascade
Zdroje
1. Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, cell & environment. 2005;28(4):500–12.
2. Liu KH, Niu Y, Konishi M, Wu Y, Du H, Sun Chung H, et al. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature. 2017;545(7654):311–6. doi: 10.1038/nature22077 28489820
3. Rahayu YS, Walch-Liu P, Neumann G, Romheld V, von Wiren N, Bangerth F. Root-derived cytokinins as long-distance signals for NO3—induced stimulation of leaf growth. Journal of experimental botany. 2005;56(414):1143–52. doi: 10.1093/jxb/eri107 15710629
4. Vidal EA, Moyano TC, Canales J, Gutierrez RA. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. Journal of experimental botany. 2014;65(19):5611–8. doi: 10.1093/jxb/eru326 25129132
5. Yan D, Easwaran V, Chau V, Okamoto M, Ierullo M, Kimura M, et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nature communications. 2016;7:13179. doi: 10.1038/ncomms13179 27731416
6. Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM. Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome biology. 2010;11(12):R123. doi: 10.1186/gb-2010-11-12-r123 21182762
7. Medici A, Krouk G. The primary nitrate response: a multifaceted signalling pathway. Journal of experimental botany. 2014;65(19):5567–76. doi: 10.1093/jxb/eru245 24942915
8. Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, et al. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant physiology. 2004;136(1):2512–22. doi: 10.1104/pp.104.044610 15333754
9. Hu HC, Wang YY, Tsay YF. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant journal: for cell and molecular biology. 2009;57(2):264–78.
10. Redinbaugh MG, Campbell WH. Glutamine Synthetase and Ferredoxin-Dependent Glutamate Synthase Expression in the Maize (Zea mays) Root Primary Response to Nitrate (Evidence for an Organ-Specific Response). Plant physiology. 1993;101(4):1249–55. doi: 10.1104/pp.101.4.1249 12231779
11. Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants. Cell. 2009;138(6):1184–94. doi: 10.1016/j.cell.2009.07.004 19766570
12. Riveras E, Alvarez JM, Vidal EA, Oses C, Vega A, Gutierrez RA. The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis. Plant physiology. 2015;169(2):1397–404. doi: 10.1104/pp.15.00961 26304850
13. Sanyal SK, Pandey A, Pandey GK. The CBL-CIPK signaling module in plants: a mechanistic perspective. Physiologia plantarum. 2015;155:89–108. doi: 10.1111/ppl.12344 25953089
14. Ma Q, Tang RJ, Zheng XJ, Wang SM, Luan S. The calcium sensor CBL7 modulates plant responses to low nitrate in Arabidopsis. Biochemical and biophysical research communications. 2015;468(1–2):59–65. doi: 10.1016/j.bbrc.2015.10.164 26549233
15. Yang J, Zhang X, Huang Y, Feng Y, Li Y. OsCBL1 modulates lateral root elongation in rice via affecting endogenous indole-3-acetic acid biosynthesis. Journal of genetics and genomics = Yi chuan xue bao. 2015;42(6):331–4. doi: 10.1016/j.jgg.2015.03.004 26165499
16. Yan Y, Wang H, Hamera S, Chen X, Fang R. miR444a has multiple functions in the rice nitrate-signaling pathway. The Plant journal: for cell and molecular biology. 2014;78(1):44–55.
17. Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell. 2006;125(7):1347–60. doi: 10.1016/j.cell.2006.06.011 16814720
18. Straub T, Ludewig U, Neuhaeuser B. The Kinase CIPK23 Inhibits Ammonium Transport in Arabidopsis thaliana. The Plant cell. 2017.
19. Li J, Long Y, Qi GN, Li J, Xu ZJ, Wu WH, et al. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. The Plant cell. 2014;26(8):3387–402. doi: 10.1105/tpc.114.123455 25096783
20. Guan P. Dancing with Hormones: A Current Perspective of Nitrate Signaling and Regulation in Arabidopsis. Frontiers in plant science. 2017;8:1697. doi: 10.3389/fpls.2017.01697 29033968
21. Girin T, Lejay L, Wirth J, Widiez T, Palenchar PM, Nazoa P, et al. Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant. Plant, cell & environment. 2007;30(11):1366–80.
22. Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, et al. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant physiology. 2004;136(1):2483–99. doi: 10.1104/pp.104.047019 15375205
23. Wang R, Xing X, Wang Y, Tran A, Crawford NM. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant physiology. 2009;151(1):472–8. doi: 10.1104/pp.109.140434 19633234
24. Zhao L, Liu F, Crawford NM, Wang Y. Molecular Regulation of Nitrate Responses in Plants. International journal of molecular sciences. 2018;19(7).
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF