Protocol development for discovery of angiogenesis inhibitors via automated methods using zebrafish
Autoři:
Antonio Mauro aff001; Robin Ng aff001; Jamie Yuanjun Li aff001; Rui Guan aff001; Youdong Wang aff001; Krishna Kumar Singh aff001; Xiao-Yan Wen aff001
Působiště autorů:
Zebrafish Centre for Advanced Drug Discovery, Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
aff001; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
aff002; Cardiovascular Sciences Collaborative Program, University of Toronto, Toronto, Ontario, Canada
aff003; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
aff004; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
aff005; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
aff006; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
aff007; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
aff008
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221796
Souhrn
Their optical clarity as larvae and embryos, small size, and high fecundity make zebrafish ideal for whole animal high throughput screening. A high-throughput drug discovery platform (HTP) has been built to perform fully automated screens of compound libraries with zebrafish embryos. A Tg(kdrl:EGFP) line, marking endothelial cell cytoplasm, was used in this work to help develop protocols and functional algorithms for the system, with the intent of screening for angiogenesis inhibitors. Indirubin 3’ Monoxime (I3M), a known angiogenesis inhibitor, was used at various concentrations to validate the protocols. Consistent with previous studies, a dose dependant inhibitory effect of I3M on angiogenesis was confirmed. The methods and protocols developed here could significantly increase the throughput of drug screens, while limiting human errors. These methods are expected to facilitate the discovery of novel anti-angiogenesis compounds and can be adapted for many other applications in which samples have a good fluorescent signal.
Klíčová slova:
Embryos – Library screening – Drug discovery – Zebrafish – Computer software – Drug screening – Robots – Angiogenesis
Zdroje
1. Lieschke GJ, Currie PD. Animal models of human disease: Zebrafish swim into view. Nat Rev Genet. 2007;8(5):353–67. doi: 10.1038/nrg2091 17440532
2. Jin S-W, Beis D, Mitchell T, Chen J-N, Stainier DYR. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development [Internet]. 2005 Dec 1;132(23):5199 LP– 5209. http://dev.biologists.org/content/132/23/5199.abstract
3. Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996;173(1):33–8.
4. Yang TT, Cheng L, Kain SR. Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 1996;24(22):4592–3. doi: 10.1093/nar/24.22.4592 8948654
5. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell [Internet]. 2007 Aug 24;130(4):691–703. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010851/17719546
6. Herbert SP, Stainier DYR. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol [Internet]. 2011 Aug 23;12(9):551–64. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319719/21860391
7. Verheul HMW, Voest EE, Schlingemann RO. Are tumours angiogenesis-dependent? J Pathol [Internet]. 2004;202(1):5–13. http://dx.doi.org/10.1002/path.147314694516
8. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, et al. Inhibition of Vascular Endothelial Growth Factor (VEGF) Signaling in Cancer Causes Loss of Endothelial Fenestrations, Regression of Tumor Vessels, and Appearance of Basement Membrane Ghosts. Am J Pathol [Internet]. 2004 Jul 4;165(1):35–52. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618540/15215160
9. Yamagishi N, Teshima-Kondo S, Masuda K, Nishida K, Kuwano Y, Dang DT, et al. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells. BMC Cancer [Internet]. 2013 May 7;13:229. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658959/23651517
10. Schoffski P, Dumez H, Clement P, Hoeben A, Prenen H, Wolter P, et al. Emerging role of tyrosine kinase inhibitors in the treatment of advanced renal cell cancer: a review. Ann Oncol Off J Eur Soc Med Oncol. 2006 Aug;17(8):1185–96.
11. Renaud O, Herbomel P, Kissa K. Studying cell behavior in whole zebrafish embryos by confocal live imaging: Application to hematopoietic stem cells. Nat Protoc [Internet]. 2011;6(12):1897–904. http://dx.doi.org/10.1038/nprot.2011.40822082984
12. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn an Off public. 1995;203(3):253–310.
13. Pype C, Verbueken E, Saad MA, Casteleyn CR, Van Ginneken CJ, Knapen D, et al. Incubation at 32.5°C and above causes malformations in the zebrafish embryo. Reprod Toxicol [Internet]. 2015;56:56–63. http://dx.doi.org/10.1016/j.reprotox.2015.05.006
14. Kim JK, Shin EK, Kang YH, Park JHY. Indirubin-3′-monoxime, a derivative of a chinese antileukemia medicine, inhibits angiogenesis. J Cell Biochem. 2011;112(5):1384–91. doi: 10.1002/jcb.23055
15. Hogan BM, Schulte-Merker S. How to Plumb a Pisces: Understanding Vascular Development and Disease Using Zebrafish Embryos. Dev Cell [Internet]. 2017;42(6):567–83. http://dx.doi.org/10.1016/j.devcel.2017.08.01528950100
16. Dimova I, Popivanov G, Djonov V. Angiogenesis in cancer—General pathways and their therapeutic implications. J BUON. 2014;19(1):15–21. 24659637
17. Hida K, Maishi N. Abnormalities of tumor endothelial cells and cancer progression. Oral Sci Int [Internet]. 2018;15(1):1–6. https://doi.org/10.1016/S1348-8643(17)30041-1%0Ahttp://linkinghub.elsevier.com/retrieve/pii/S1348864317300411
18. Philip AM, Wang Y, Mauro A, El-Rass S, Marshall JC, Lee WL, et al. Development of a Zebrafish Sepsis Model for High-Throughput Drug Discovery. Mol Med. 2017;23(1):134–48.
19. Westerfield M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish Danio (Brachydanio rerio). Eugene, USA: University of Oregon Press; 1993.
20. El-Rass S, Eisa-Beygi S, Khong E, Brand-Arzamendi K, Mauro A, Zhang H, et al. Disruption of pdgfra alters endocardial and myocardial fusion during zebrafish cardiac assembly. Biol Open. 2017;6(3):348–57. doi: 10.1242/bio.021212 28167492
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF