Veterans with Gulf War Illness exhibit distinct respiratory patterns during maximal cardiopulmonary exercise
Autoři:
Jacob B. Lindheimer aff001; Dane B. Cook aff002; Jacquelyn C. Klein-Adams aff001; Wei Qian aff001; Helene Z. Hill aff004; Gudrun Lange aff005; Duncan S. Ndirangu aff001; Glenn R. Wylie aff001; Michael J. Falvo aff001
Působiště autorů:
War Related Illness and Injury Study Center, Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
aff001; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
aff002; Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
aff003; New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
aff004; Department of Neurology, Mount Sinai Beth Israel, New York, New York, Unites States of America
aff005; Kessler Foundation, West Orange, New Jersey, United States of America
aff006
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224833
Souhrn
Introduction
The components of minute ventilation, respiratory frequency and tidal volume, appear differentially regulated and thereby afford unique insight into the ventilatory response to exercise. However, respiratory frequency and tidal volume are infrequently reported, and have not previously been considered among military veterans with Gulf War Illness. Our purpose was to evaluate respiratory frequency and tidal volume in response to a maximal cardiopulmonary exercise test in individuals with and without Gulf War Illness.
Materials and methods
20 cases with Gulf War Illness and 14 controls participated in this study and performed maximal cardiopulmonary exercise test on a cycle ergometer. Ventilatory variables (minute ventilation, respiratory frequency and tidal volume) were obtained and normalized to peak exercise capacity. Using mixed-design analysis of variance models, with group and time as factors, we analyzed exercise ventilatory patterns for the entire sample and for 11 subjects from each group matched for race, age, sex, and height.
Results
Despite similar minute ventilation (p = 0.57, η2p = 0.01), tidal volume was greater (p = 0.02, η2p = 0.16) and respiratory frequency was lower (p = 0.004, η2p = 0.24) in Veterans with Gulf War Illness than controls. The findings for respiratory frequency remained significant in the matched subgroup (p = 0.004, η2p = 0.35).
Conclusion
In our sample, veterans with Gulf War Illness adopt a unique exercise ventilatory pattern characterized by reduced respiratory frequency, despite similar ventilation relative to controls. Although the mechanism(s) by which this pattern is achieved remains unresolved, our findings suggest that the components of ventilation should be considered when evaluating clinical conditions with unexplained exertional symptoms.
Klíčová slova:
Spirometry – Sports and exercise medicine – Exercise – Veterans – Breathing – Tidal volume – Pain sensation – Gulf War syndrome
Zdroje
1. Tipton MJ, Harper A, Paton JF, Costello JT. The human ventilatory response to stress: rate or depth? The Journal of Physiology. 2017.
2. Nicolo A, Marcora SM, Bazzucchi I, Sacchetti M. Differential control of respiratory frequency and tidal volume during high-intensity interval training. Exp Physiol. 2017;102(8):934–49. doi: 10.1113/EP086352 28560751.
3. Nicolo A, Bazzucchi I, Haxhi J, Felici F, Sacchetti M. Comparing continuous and intermittent exercise: an "isoeffort" and "isotime" approach. PLoS One. 2014;9(4):e94990. doi: 10.1371/journal.pone.0094990 24736313.
4. Nicolo A, Marcora SM, Sacchetti M. Respiratory frequency is strongly associated with perceived exertion during time trials of different duration. J Sports Sci. 2016;34(13):1199–206. doi: 10.1080/02640414.2015.1102315 26503587.
5. Bell HJ, Duffin J. Rapid increases in ventilation accompany the transition from passive to active movement. Respir Physiol Neurobiol. 2006;152(2):128–42. Epub 2005/09/13. doi: 10.1016/j.resp.2005.07.008 16153897.
6. Thornton JM, Guz A, Murphy K, Griffith AR, Pedersen DL, Kardos A, et al. Identification of higher brain centres that may encode the cardiorespiratory response to exercise in humans. J Physiol. 2001;533(Pt 3):823–36. doi: 10.1111/j.1469-7793.2001.00823.x 11410638.
7. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. 2003;167(2):211–77. doi: 10.1164/rccm.167.2.211 12524257.
8. White RF, Steele L, O'Callaghan JP, Sullivan K, Binns JH, Golomb BA, et al. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex. 2016;74:449–75. doi: 10.1016/j.cortex.2015.08.022 26493934
9. Kelsall HL, Sim MR, Forbes AB, McKenzie DP, Glass DC, Ikin JF, et al. Respiratory health status of Australian veterans of the 1991 Gulf War and the effects of exposure to oil fire smoke and dust storms. Thorax. 2004;59(10):897–903. doi: 10.1136/thx.2003.017103 15454658
10. Karlinsky JB, Blanchard M, Alpern R, Eisen SA, Kang H, Murphy FM, et al. Late prevalence of respiratory symptoms and pulmonary function abnormalities in Gulf War I Veterans. Arch Intern Med. 2004;164(22):2488–91. doi: 10.1001/archinte.164.22.2488 15596641
11. Medinger AE, Chan TW, Arabian A, Rohatgi PK. Interpretive algorithms for the symptom-limited exercise test: assessing dyspnea in Persian Gulf war veterans. Chest. 1998;113(3):612–8. doi: 10.1378/chest.113.3.612 9515833
12. Nagelkirk P, Cook D, Peckerman A, Kesil W, Sakowski T, Natelson B, et al. Aerobic capacity of Gulf War veterans with chronic fatigue syndrome. Military medicine. 2003;168(9):750. 14529252
13. Cook DB, Nagelkirk PR, Peckerman A, Poluri A, LaManca JJ, Natelson BH. Perceived exertion in fatiguing illness: Gulf War veterans with chronic fatigue syndrome. Medicine and science in sports and exercise. 2003;35(4):569–74. doi: 10.1249/01.MSS.0000058438.25278.33 12673138
14. Broderick G, Ben-Hamo R, Vashishtha S, Efroni S, Nathanson L, Barnes Z, et al. Altered immune pathway activity under exercise challenge in Gulf War Illness: An exploratory analysis. Brain, Behavior, and Immunity. 2013;28:159–69. http://dx.doi.org/10.1016/j.bbi.2012.11.007. doi: 10.1016/j.bbi.2012.11.007 23201588
15. Broderick G, Kreitz A, Fuite J, Fletcher MA, Vernon SD, Klimas N. A pilot study of immune network remodeling under challenge in Gulf War Illness. Brain, Behavior, and Immunity. 2011;25(2):302–13. doi: 10.1016/j.bbi.2010.10.011 20955779
16. Cook DB, Stegner AJ, Ellingson LD. Exercise Alters Pain Sensitivity in Gulf War Veterans With Chronic Musculoskeletal Pain. The Journal of Pain. 2010;11(8):764–72. doi: 10.1016/j.jpain.2009.11.010 20338824
17. Donta ST C DJ EJ CC, et al. Cognitive behavioral therapy and aerobic exercise for gulf war veterans' illnesses: A randomized controlled trial. JAMA. 2003;289(11):1396–404. doi: 10.1001/jama.289.11.1396 12636462
18. Rayhan RU, Raksit MP, Timbol CR, Adewuyi O, VanMeter JW, Baraniuk JN. Prefrontal lactate predicts exercise-induced cognitive dysfunction in Gulf War Illness. American Journal of Translational Research. 2013;5(2):212–23. 23573365
19. Rayhan RU, Stevens BW, Raksit MP, Ripple JA, Timbol CR, Adewuyi O, et al. Exercise Challenge in Gulf War Illness Reveals Two Subgroups with Altered Brain Structure and Function. PLoS ONE. 2013;8(6):e63903. doi: 10.1371/journal.pone.0063903 23798990
20. Smylie AL, Broderick G, Fernandes H, Razdan S, Barnes Z, Collado F, et al. A comparison of sex-specific immune signatures in Gulf War illness and chronic fatigue syndrome. BMC Immunology. 2013;14(1):29. doi: 10.1186/1471-2172-14-29 23800166
21. Whistler T, Fletcher M, Lonergan W, Zeng XR, Lin JM, LaPerriere A, et al. Impaired immune function in Gulf War Illness. BMC Medical Genomics. 2009;2(1):12.
22. IOM. Chronic Multisymptom Illness in Gulf War Veterans: Case Definitions Reexamined. Washington, DC: The National Academies Press; 2014. 130 p.
23. Steele L. Prevalence and patterns of Gulf War illness in Kansas veterans: association of symptoms with characteristics of person, place, and time of military service. Am J Epidemiol. 2000;152(10):992–1002. Epub 2000/11/25. doi: 10.1093/aje/152.10.992 11092441.
24. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3. doi: 10.1001/archneur.1989.00520460115022 2803071.
25. Falvo MJ, Serrador JM, McAndrew LM, Chandler HK, Lu SE, Quigley KS. A retrospective cohort study of U.S. service members returning from Afghanistan and Iraq: is physical health worsening over time? BMC Public Health. 2012;12:1124. Epub 2013/01/01. doi: 10.1186/1471-2458-12-1124 23272950.
26. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. EurRespirJ. 2005;26(2):319–38.
27. Hankinson J, Odencrantz J, Fedan K. Spirometric Reference Values from a Sample of the General U.S. Population. American Journal of Respiratory and Critical Care Medicine. 1999;159(1):179–87. doi: 10.1164/ajrccm.159.1.9712108 9872837
28. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985). 1986;60(6):2020–7. doi: 10.1152/jappl.1986.60.6.2020 3087938.
29. Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141(1):2–18. Epub 2011/08/10. doi: 10.1037/a0024338 21823805.
30. Cook DB, Nagelkirk PR, Poluri A, Mores J, Natelson BH. The influence of aerobic fitness and fibromyalgia on cardiorespiratory and perceptual responses to exercise in patients with chronic fatigue syndrome. Arthritis Rheum. 2006;54(10):3351–62. doi: 10.1002/art.22124 17009309
31. Inbar O, Dlin R, Rotstein A, Whipp BJ. Physiological responses to incremental exercise in patients with chronic fatigue syndrome. Med Sci Sports Exerc. 2001;33(9):1463–70. Epub 2001/08/31. doi: 10.1097/00005768-200109000-00007 11528333.
32. Sanudo B, Galiano D. Using cardiovascular parameters and symptom severity to prescribe physical activity in women with fibromyalgia. Clin Exp Rheumatol. 2009;27(5 Suppl 56):S62–6. Epub 2010/03/12. 20074442.
33. Loe H, Steinshamn S, Wisloff U. Cardio-respiratory reference data in 4631 healthy men and women 20–90 years: the HUNT 3 fitness study. PLoS One. 2014;9(11):e113884. Epub 2014/11/27. doi: 10.1371/journal.pone.0113884 25426954.
34. Tanner DA, Duke JW, Stager JM. Ventilatory patterns differ between maximal running and cycling. Respir Physiol Neurobiol. 2014;191:9–16. Epub 2013/11/12. doi: 10.1016/j.resp.2013.10.011 24211317.
35. Neder JA, Dal Corso S, Malaguti C, Reis S, De Fuccio MB, Schmidt H, et al. The pattern and timing of breathing during incremental exercise: a normative study. Eur Respir J. 2003;21(3):530–8. Epub 2003/03/29. doi: 10.1183/09031936.03.00045402 12662013.
36. Hirsch JA, Bishop B. Human breathing patterns on mouthpiece or face mask during air, CO2, or low O2. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(5):1281–90. Epub 1982/11/01. doi: 10.1152/jappl.1982.53.5.1281 6816769.
37. Sheel AW, Romer LM. Ventilation and respiratory mechanics. Compr Physiol. 2012;2(2):1093–142. doi: 10.1002/cphy.c100046 23798297.
38. Pianosi P, D'Souza SJ, Esseltine DW, Charge TD, Coates AL. Ventilation and gas exchange during exercise in sickle cell anemia. Am Rev Respir Dis. 1991;143(2):226–30. Epub 1991/02/01. doi: 10.1164/ajrccm/143.2.226 1990932.
39. Aaron EA, Johnson BD, Seow CK, Dempsey JA. Oxygen cost of exercise hyperpnea: measurement. J Appl Physiol (1985). 1992;72(5):1810–7. Epub 1992/05/01. doi: 10.1152/jappl.1992.72.5.1810 1601790.
40. Forster HV, Haouzi P, Dempsey JA. Control of Breathing During Exercise. Comprehensive Physiology: John Wiley & Sons, Inc.; 2011.
41. Turner DL, Sumners DP. Associative conditioning of the exercise ventilatory response in humans. Respir Physiol Neurobiol. 2002;132(2):159–68. Epub 2002/08/06. 12161329.
42. Wood HE, Fatemian M, Robbins PA. A learned component of the ventilatory response to exercise in man. J Physiol. 2003;553(Pt 3):967–74. doi: 10.1113/jphysiol.2003.047597 14514870.
43. Martin PA, Mitchell GS. Long-term modulation of the exercise ventilatory response in goats. J Physiol. 1993;470:601–17. doi: 10.1113/jphysiol.1993.sp019877 8308746.
44. Turner D, Stewart JD. Associative conditioning with leg cycling and inspiratory resistance enhances the early exercise ventilatory response in humans. Eur J Appl Physiol. 2004;93(3):333–9. doi: 10.1007/s00421-004-1194-2 15375661.
45. Turk DC, Robinson JP, Burwinkle T. Prevalence of fear of pain and activity in patients with fibromyalgia syndrome. The Journal of Pain. 2004;5(9):483–90. doi: 10.1016/j.jpain.2004.08.002 15556826
46. Zautra AJ, Fasman R, Davis MC, Craig AD. The effects of slow breathing on affective responses to pain stimuli: an experimental study. Pain. 2010;149(1):12–8. Epub 2010/01/19. doi: 10.1016/j.pain.2009.10.001 20079569.
47. Chalaye P, Goffaux P, Lafrenaye S, Marchand S. Respiratory effects on experimental heat pain and cardiac activity. Pain Med. 2009;10(8):1334–40. Epub 2009/08/13. doi: 10.1111/j.1526-4637.2009.00681.x 19671085.
48. Busch V, Magerl W, Kern U, Haas J, Hajak G, Eichhammer P. The effect of deep and slow breathing on pain perception, autonomic activity, and mood processing—an experimental study. Pain Med. 2012;13(2):215–28. Epub 2011/09/24. doi: 10.1111/j.1526-4637.2011.01243.x 21939499.
49. Grant JA, Rainville P. Pain sensitivity and analgesic effects of mindful states in Zen meditators: a cross-sectional study. Psychosom Med. 2009;71(1):106–14. Epub 2008/12/17. doi: 10.1097/PSY.0b013e31818f52ee 19073756.
50. Lindheimer JB, Meyer JD, Stegner AJ, Dougherty RJ, Van Riper SM, Shields M, et al. Symptom variability following acute exercise in myalgic encephalomyelitis/chronic fatigue syndrome: a perspective on measuring post-exertion malaise. Fatigue: Biomedicine, Health & Behavior. 2017;5(2):69–88. doi: 10.1080/21641846.2017.1321166
51. Nicolo A, Massaroni C, Passfield L. Respiratory Frequency during Exercise: The Neglected Physiological Measure. Front Physiol. 2017;8:922. Epub 2018/01/13. doi: 10.3389/fphys.2017.00922 29321742.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF