#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Selection of reference genes for normalization of cranberry (Vaccinium macrocarpon Ait.) gene expression under different experimental conditions


Autoři: Chen Li aff001;  Jian Xu aff001;  Yu Deng aff002;  Haiyue Sun aff001;  Yadong Li aff001
Působiště autorů: Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, China aff001;  College of Life Sciences, Jilin Agricultural University, Changchun, China aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224798

Souhrn

Real-time fluorescent quantitative PCR (qRT-PCR) is often chosen as an effective experimental method for analyzing gene expression. However, an appropriate reference gene as a standard is needed to obtain accurate gene expression data. To date, no internal reference genes have been reported for research on cranberries. Expanding the selection of internal reference genes for cranberry will enable reliable gene expression analysis, and, at the same time, can also lay a solid foundation for revealing the biological characteristics of cranberry. Here, we selected ten candidate reference gene families and used three statistical software tools—geNorm, NormFinder and BestKeeper—to evaluate their expression stability under the influence of different experimental factors. The results showed that protein phosphatase 2A regulatory subunit (PP2A) or RNA helicase-like 8 (RH 8) was the best choice for an internal reference gene when analyzing different cranberry cultivars. In two sample sets comprising different cranberry organs and three abiotic stress treatments, sand family protein (SAND) was the best choice as a reference gene. In this study, we screened genes that are stably expressed under the influence of various experimental factors by qRT-PCR. Our results will guide future studies involving gene expression analysis of cranberry.

Klíčová slova:

Gene expression – Fruits – Library screening – Plant resistance to abiotic stress – Leaves – RNA extraction – Ribosomal RNA – Genetic screens


Zdroje

1. He X.; Liu R. H., Cranberry phytochemicals: Isolation, structure elucidation, and their antiproliferative and antioxidant activities. J. Agric. Food Chem. 2006, 54 (19), 7069–74. doi: 10.1021/jf061058l 16968064

2. Zhong W.; You W., Cranberry health function. Environmental Hygiene. 2004, 31 (6), 370–373.

3. Bustin S. A.; Benes V.; Nolan T.; Pfaffl M. W., Quantitative real-time RT-PCR—a perspective. J. Mol. Endocrinol. 2005, 34 (3), 597–601. doi: 10.1677/jme.1.01755 15956331

4. Ginzinger D. G., Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 2002, 30 (6), 503–12. doi: 10.1016/s0301-472x(02)00806-8 12063017

5. Klein D., Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med. 2002, 8 (6), 257–60. 12067606

6. Bustin S. A., Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 2002, 29 (1), 23–39. doi: 10.1677/jme.0.0290023 12200227

7. Nolan T.; Hands R. E.; Bustin S. A., Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006, 1 (3), 1559–82. doi: 10.1038/nprot.2006.236 17406449

8. Bustin S. A., Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25 (2), 169–93. doi: 10.1677/jme.0.0250169 11013345

9. VanGuilder H. D.; Vrana K. E.; Freeman W. M., Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 2008, 44 (5), 619–26. doi: 10.2144/000112776 18474036

10. Zhang Y. J.; Zhu Z. F.; Rong L. U.; Qiong X. U.; Shi L. X.; Jian X., et al., Selection of Control Genes in Transcription Analysis of Gene Expression. Progress in Biochemistry & Biophysics 2007, 34 (5), 546–550.

11. Vandesompele J.; De Preter K.; Pattyn F.; Poppe B.; Van Roy N.; De Paepe A., et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7), Research0034.

12. Andersen C. L.; Jensen J. L.; Orntoft T. F., Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64 (15), 5245–50. doi: 10.1158/0008-5472.CAN-04-0496 15289330

13. Pfaffl M. W.; Tichopad A.; Prgomet C.; Neuvians T. P., Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26 (6), 509–15. 15127793

14. Chang S.; Puryear J.; Cairney J., A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993, 11 (2), 113–116.

15. Czechowski T.; Stitt M.; Altmann T.; Udvardi M. K.; Scheible W. R., Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139 (1), 5–17. doi: 10.1104/pp.105.063743 16166256

16. Reid K. E.; Olsson N.; Schlosser J.; Peng F.; Lund S. T., An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006, 6 (1), 27–27.

17. Iskandar H. M.; Simpson R. S.; Casu R. E.; Bonnett G. D.; Maclean D. J.; Manners J. M., Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol. Biol. Rep. 2004, 22 (4), 325–337.

18. Artico S.; Nardeli S. M.; Brilhante O.; Grossi-de-Sa M. F.; Alves-Ferreira M., Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol. 2010, 10, 49. doi: 10.1186/1471-2229-10-49 20302670

19. Diretto G.; Welsch R.; Tavazza R.; Mourgues F.; Pizzichini D.; Beyer P.; Giuliano G., Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol. 2007, 7, 11. doi: 10.1186/1471-2229-7-11 17335571

20. Jain M.; Nijhawan A.; Tyagi A. K.; Khurana J. P., Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2006, 345 (2), 646–51. doi: 10.1016/j.bbrc.2006.04.140 16690022

21. Thellin O.; ElMoualij B.; Heinen E.; Zorzi W., A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol Adv 2009, 27 (4), 323–33. 19472509

22. Libault M.; Thibivilliers S.; Bilgin D. D.; Radwan O.; Benitez M.; Clough S. J.; et al., Identification of four soybean reference genes for gene expression normalization. The Plant Genome 2008, 1 (1), 44–54.

23. Sun H.; Liu Y.; Gai Y.; Geng J.; Chen L.; Liu H.; et al., De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. BMC Genomics 2015, 16, 652. doi: 10.1186/s12864-015-1842-4 26330221

24. Mortazavi A.; Williams B. A.; McCue K.; Schaeffer L.; Wold B., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5 (7), 621–8. doi: 10.1038/nmeth.1226 18516045

25. Altschul S. F.; Gish W.; Miller W.; Myers E. W.; Lipman D. J., Basic local alignment search tool. J. Mol. Biol. 1990, 215 (3), 403–10. doi: 10.1016/S0022-2836(05)80360-2 2231712

26. Royeen C. B., The boxplot: a screening test for research data. Am. J. Occup. Ther. 1986, 40 (8), 569–71. doi: 10.5014/ajot.40.8.569 3752225

27. Vashisth T.; Johnson L. K.; Malladi A., An efficient RNA isolation procedure and identification of reference genes for normalization of gene expression in blueberry. Plant Cell Rep 2011, 30 (12), 2167–76. doi: 10.1007/s00299-011-1121-z 21761237

28. Exposito-Rodriguez M.; Borges A. A.; Borges-Perez A.; Perez J. A., Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 2008, 8, 131. doi: 10.1186/1471-2229-8-131 19102748

29. Wan H.; Zhao Z.; Qian C.; Sui Y.; Malik A. A.; Chen J., Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem. 2010, 399 (2), 257–61. doi: 10.1016/j.ab.2009.12.008 20005862

30. Zhu X.; Li X.; Chen W.; Chen J.; Lu W.; Chen L.; Fu D., Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS One 2012, 7 (8), e44405. doi: 10.1371/journal.pone.0044405 22952972


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#