Selection of reference genes for normalization of cranberry (Vaccinium macrocarpon Ait.) gene expression under different experimental conditions
Autoři:
Chen Li aff001; Jian Xu aff001; Yu Deng aff002; Haiyue Sun aff001; Yadong Li aff001
Působiště autorů:
Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, China
aff001; College of Life Sciences, Jilin Agricultural University, Changchun, China
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224798
Souhrn
Real-time fluorescent quantitative PCR (qRT-PCR) is often chosen as an effective experimental method for analyzing gene expression. However, an appropriate reference gene as a standard is needed to obtain accurate gene expression data. To date, no internal reference genes have been reported for research on cranberries. Expanding the selection of internal reference genes for cranberry will enable reliable gene expression analysis, and, at the same time, can also lay a solid foundation for revealing the biological characteristics of cranberry. Here, we selected ten candidate reference gene families and used three statistical software tools—geNorm, NormFinder and BestKeeper—to evaluate their expression stability under the influence of different experimental factors. The results showed that protein phosphatase 2A regulatory subunit (PP2A) or RNA helicase-like 8 (RH 8) was the best choice for an internal reference gene when analyzing different cranberry cultivars. In two sample sets comprising different cranberry organs and three abiotic stress treatments, sand family protein (SAND) was the best choice as a reference gene. In this study, we screened genes that are stably expressed under the influence of various experimental factors by qRT-PCR. Our results will guide future studies involving gene expression analysis of cranberry.
Klíčová slova:
Gene expression – Fruits – Library screening – Plant resistance to abiotic stress – Leaves – RNA extraction – Ribosomal RNA – Genetic screens
Zdroje
1. He X.; Liu R. H., Cranberry phytochemicals: Isolation, structure elucidation, and their antiproliferative and antioxidant activities. J. Agric. Food Chem. 2006, 54 (19), 7069–74. doi: 10.1021/jf061058l 16968064
2. Zhong W.; You W., Cranberry health function. Environmental Hygiene. 2004, 31 (6), 370–373.
3. Bustin S. A.; Benes V.; Nolan T.; Pfaffl M. W., Quantitative real-time RT-PCR—a perspective. J. Mol. Endocrinol. 2005, 34 (3), 597–601. doi: 10.1677/jme.1.01755 15956331
4. Ginzinger D. G., Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 2002, 30 (6), 503–12. doi: 10.1016/s0301-472x(02)00806-8 12063017
5. Klein D., Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med. 2002, 8 (6), 257–60. 12067606
6. Bustin S. A., Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 2002, 29 (1), 23–39. doi: 10.1677/jme.0.0290023 12200227
7. Nolan T.; Hands R. E.; Bustin S. A., Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006, 1 (3), 1559–82. doi: 10.1038/nprot.2006.236 17406449
8. Bustin S. A., Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25 (2), 169–93. doi: 10.1677/jme.0.0250169 11013345
9. VanGuilder H. D.; Vrana K. E.; Freeman W. M., Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 2008, 44 (5), 619–26. doi: 10.2144/000112776 18474036
10. Zhang Y. J.; Zhu Z. F.; Rong L. U.; Qiong X. U.; Shi L. X.; Jian X., et al., Selection of Control Genes in Transcription Analysis of Gene Expression. Progress in Biochemistry & Biophysics 2007, 34 (5), 546–550.
11. Vandesompele J.; De Preter K.; Pattyn F.; Poppe B.; Van Roy N.; De Paepe A., et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7), Research0034.
12. Andersen C. L.; Jensen J. L.; Orntoft T. F., Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64 (15), 5245–50. doi: 10.1158/0008-5472.CAN-04-0496 15289330
13. Pfaffl M. W.; Tichopad A.; Prgomet C.; Neuvians T. P., Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26 (6), 509–15. 15127793
14. Chang S.; Puryear J.; Cairney J., A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993, 11 (2), 113–116.
15. Czechowski T.; Stitt M.; Altmann T.; Udvardi M. K.; Scheible W. R., Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139 (1), 5–17. doi: 10.1104/pp.105.063743 16166256
16. Reid K. E.; Olsson N.; Schlosser J.; Peng F.; Lund S. T., An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006, 6 (1), 27–27.
17. Iskandar H. M.; Simpson R. S.; Casu R. E.; Bonnett G. D.; Maclean D. J.; Manners J. M., Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol. Biol. Rep. 2004, 22 (4), 325–337.
18. Artico S.; Nardeli S. M.; Brilhante O.; Grossi-de-Sa M. F.; Alves-Ferreira M., Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol. 2010, 10, 49. doi: 10.1186/1471-2229-10-49 20302670
19. Diretto G.; Welsch R.; Tavazza R.; Mourgues F.; Pizzichini D.; Beyer P.; Giuliano G., Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol. 2007, 7, 11. doi: 10.1186/1471-2229-7-11 17335571
20. Jain M.; Nijhawan A.; Tyagi A. K.; Khurana J. P., Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2006, 345 (2), 646–51. doi: 10.1016/j.bbrc.2006.04.140 16690022
21. Thellin O.; ElMoualij B.; Heinen E.; Zorzi W., A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol Adv 2009, 27 (4), 323–33. 19472509
22. Libault M.; Thibivilliers S.; Bilgin D. D.; Radwan O.; Benitez M.; Clough S. J.; et al., Identification of four soybean reference genes for gene expression normalization. The Plant Genome 2008, 1 (1), 44–54.
23. Sun H.; Liu Y.; Gai Y.; Geng J.; Chen L.; Liu H.; et al., De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. BMC Genomics 2015, 16, 652. doi: 10.1186/s12864-015-1842-4 26330221
24. Mortazavi A.; Williams B. A.; McCue K.; Schaeffer L.; Wold B., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5 (7), 621–8. doi: 10.1038/nmeth.1226 18516045
25. Altschul S. F.; Gish W.; Miller W.; Myers E. W.; Lipman D. J., Basic local alignment search tool. J. Mol. Biol. 1990, 215 (3), 403–10. doi: 10.1016/S0022-2836(05)80360-2 2231712
26. Royeen C. B., The boxplot: a screening test for research data. Am. J. Occup. Ther. 1986, 40 (8), 569–71. doi: 10.5014/ajot.40.8.569 3752225
27. Vashisth T.; Johnson L. K.; Malladi A., An efficient RNA isolation procedure and identification of reference genes for normalization of gene expression in blueberry. Plant Cell Rep 2011, 30 (12), 2167–76. doi: 10.1007/s00299-011-1121-z 21761237
28. Exposito-Rodriguez M.; Borges A. A.; Borges-Perez A.; Perez J. A., Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 2008, 8, 131. doi: 10.1186/1471-2229-8-131 19102748
29. Wan H.; Zhao Z.; Qian C.; Sui Y.; Malik A. A.; Chen J., Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem. 2010, 399 (2), 257–61. doi: 10.1016/j.ab.2009.12.008 20005862
30. Zhu X.; Li X.; Chen W.; Chen J.; Lu W.; Chen L.; Fu D., Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS One 2012, 7 (8), e44405. doi: 10.1371/journal.pone.0044405 22952972
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF